Abstract

We demonstrate an electrowetting based optical switch with tunable aperture. Under the influence of an electric field a non-transparent oil film can be replaced locally by a transparent water drop creating an aperture through which light can pass. Its diameter can be tuned between 0.2 and 1.2 mm by varying the driving voltage or frequency. The on and off response time of the switch is in the order of 2 and 120 ms respectively. Finally we demonstrate an array of switchable apertures that can be tuned independently or simultaneously.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
    [CrossRef]
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [CrossRef]
  3. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  4. B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
    [CrossRef] [PubMed]
  5. H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  6. H. W. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
    [CrossRef] [PubMed]
  7. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
    [CrossRef] [PubMed]
  8. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [CrossRef]
  9. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [CrossRef] [PubMed]
  10. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [CrossRef] [PubMed]
  11. T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
    [CrossRef]
  12. J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86, - (2005).
  13. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
    [CrossRef]
  14. N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
    [CrossRef]
  15. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  16. J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting Switch for Multimode Optical Fibers,” Appl. Opt. 22(11), 1765–1770 (1983).
    [CrossRef] [PubMed]
  17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
    [CrossRef]
  18. H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
    [CrossRef] [PubMed]
  19. G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
    [CrossRef] [PubMed]
  20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
    [CrossRef]
  21. J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).
  22. A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006).
    [CrossRef] [PubMed]
  23. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008).
    [CrossRef]
  24. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
    [CrossRef]
  25. J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006).
    [CrossRef] [PubMed]

2011

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

2010

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
[CrossRef] [PubMed]

H. W. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[CrossRef] [PubMed]

2009

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

2008

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008).
[CrossRef]

H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

2007

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

2006

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006).
[CrossRef] [PubMed]

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006).
[CrossRef] [PubMed]

2005

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[CrossRef]

2004

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

2003

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

2000

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

1983

Abeysinghe, D. C.

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Andelman, D.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

Baret, J. C.

J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006).
[CrossRef] [PubMed]

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[CrossRef]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Beni, G.

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Berge, B.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Bonn, D.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Brinkmann, M.

J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006).
[CrossRef] [PubMed]

Cheng, L. L.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Clapp, L.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Dean, K. A.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Duits, M. H. G.

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
[CrossRef] [PubMed]

Eggers, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Ende, D.

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

Feenstra, B. J.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

Gu, H.

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
[CrossRef] [PubMed]

Hackwood, S.

Haus, J. W.

Hayes, R.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

Hayes, R. A.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

Heikenfeld, J.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Hirsa, A. H.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Ho, C. M.

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

Hou, L. L.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

Howard, E. M.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

Indekeu, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Jackel, J. L.

Jiang, H. R.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Johnson, M. R.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

Kreit, E.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Lammertink, R. G. H.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

Liang, C. T.

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

Lien, V.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Malouin, B. A.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Manukyan, G.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

Meunier, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Milarcik, A.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Mugele, F.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
[CrossRef] [PubMed]

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006).
[CrossRef] [PubMed]

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[CrossRef]

Oh, J. M.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

Olles, J. D.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Raj, B.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Ren, D.

Ren, H.

Ren, H. W.

Rolley, E.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Roques-Carmes, T.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

Schlangen, L. J. M.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

Schwartz, R.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Shamai, R.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

Smith, N. R.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Staicu, A.

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006).
[CrossRef] [PubMed]

Sun, B.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008).
[CrossRef]

Tsai, J. T. H.

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

van den Ende, D.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

Veselka, J. J.

Vogel, M. J.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Wang, F. C.

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

Wu, S. T.

Xianyu, H. Q.

Xu, S.

Yang, S.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Zhang, J. L.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

Zhou, K.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Europhys. Lett.

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[CrossRef]

J. Appl. Phys.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004).
[CrossRef]

J. Disp. Technol.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[CrossRef]

J. Micromech. Microeng .

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008).
[CrossRef]

J. Micromech. Microeng.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[CrossRef]

J. Phys. Condens. Matter

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[CrossRef]

Lab Chip

B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010).
[CrossRef] [PubMed]

Nat. Photonics

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Nature

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Soft Matter

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007).
[CrossRef]

Other

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86, - (2005).

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

Supplementary Material (3)

» Media 1: AVI (1121 KB)     
» Media 2: AVI (3350 KB)     
» Media 3: AVI (307 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic side view of the electrowetting driven optical switch and aperture.

Fig. 2
Fig. 2

Side view of the device in operation, applied voltage 50 V, base frequency 1 kHz and amplitude modulation at 0.5 Hz, dotted lines presents top and bottom surface respectively. Structures outside these lines show reflections of the actual meniscus (see also Media 1).

Fig. 3
Fig. 3

a) Bottom view of the optical switch in transmission, b) Graph presents normalized intensity and aperture diameter.

Fig. 4
Fig. 4

The response time of the optical switch a) off to on state, b) on to off state.

Fig. 5
Fig. 5

Aperture diameter D (normalized) as function of applied voltage. a) Complete cycle at 1 Hz of the optical aperture, dotted lines indicates the minimum and maximum aperture diameter. b) The calculated cycle based on energy minimization.

Fig. 6
Fig. 6

a) Aperture diameter at various frequencies a:i-ii 1 Hz, iii-iv 20 Hz. b) Change in aperture diameter (square) minimum aperture diameter (triangle) as function of applied frequency.

Fig. 7
Fig. 7

Intensity profiles across the aperture diameter (solid line), black to dark blue intensity profiles presents the snapshot presented in Fig. 3(a:ii-vii), Gaussian fit (square symbols).

Fig. 8
Fig. 8

a) Two optical switches, positioned close together, can be addressed independently.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

π e = ε 0 ε r E n 2 2 ε 0 ε r 2 ( V d ) 2

Metrics