Abstract

We use an empirical model together with experimental measurements for studying mechanisms contributing to thermal rollover in vertical-cavity surface-emitting lasers (VCSELs). The model is based on extraction of the temperature dependence of threshold current, internal quantum efficiency, internal optical loss, series resistance and thermal impedance from measurements of output power, voltage and lasing wavelength as a function of bias current over an ambient temperature range of 15–100°C. We apply the model to an oxide-confined, 850-nm VCSEL, fabricated with a 9-μm inner-aperture diameter and optimized for high-speed operation, and show for this specific device that power dissipation due to linear power dissipation (sum total of optical absorption, carrier thermalization, carrier leakage and spontaneous carrier recombination) exceeds power dissipation across the series resistance (quadratic power dissipation) at any ambient temperature and bias current. We further show that the dominant contributors to self-heating for this particular VCSEL are quadratic power dissipation, internal optical loss, and carrier leakage. A rapid reduction of the internal quantum efficiency at high bias currents (resulting in high temperatures) is identified as being the major cause of thermal rollover. Our method is applicable to any VCSEL and is useful for identifying the mechanisms limiting the thermal performance of the device and to formulate design strategies to ameliorate them.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hofmann, “High-speed buried tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. J. 2, 802–815 (2010).
    [CrossRef]
  2. R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
    [CrossRef]
  3. P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
    [CrossRef]
  4. J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
    [CrossRef]
  5. B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
    [CrossRef]
  6. I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
    [CrossRef]
  7. Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
    [CrossRef]
  8. Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
    [CrossRef]
  9. C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
    [CrossRef]
  10. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon life-time on high speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. (accepted for publication).
  11. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005).
    [CrossRef]
  12. Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
    [CrossRef]
  13. Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).
  14. A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
    [CrossRef]
  15. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
    [CrossRef]
  16. Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
    [CrossRef]
  17. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17, 865–872 (1999).
    [CrossRef]
  18. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
    [CrossRef]
  19. G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
    [CrossRef]
  20. W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997).
    [CrossRef]
  21. P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
    [CrossRef]
  22. C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).
  23. C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
    [CrossRef]
  24. W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
    [CrossRef] [PubMed]
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits (Wiley, 1995).
  26. Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
    [CrossRef]
  27. I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
    [CrossRef]
  28. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
    [CrossRef]
  29. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995).
    [CrossRef] [PubMed]
  30. A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
    [CrossRef]
  31. L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
    [CrossRef]
  32. K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
    [CrossRef]
  33. Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
    [CrossRef]

2011 (3)

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

2010 (6)

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

W. Hofmann, “High-speed buried tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. J. 2, 802–815 (2010).
[CrossRef]

R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
[CrossRef]

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

2009 (4)

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

2006 (2)

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

2005 (2)

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005).
[CrossRef]

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

2004 (2)

A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
[CrossRef]

1999 (1)

1997 (1)

W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997).
[CrossRef]

1996 (1)

K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
[CrossRef]

1995 (2)

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
[CrossRef]

G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995).
[CrossRef] [PubMed]

1993 (1)

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

1992 (1)

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

1991 (2)

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

1988 (1)

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Al-Omari, A. N.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[CrossRef]

Berman, R.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Block, B. A.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Chang, P. L. D.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Chang, Y.-A.

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Chang, Y.-C.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Chemla, D. S.

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Chen, J.-R.

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Cho, A. Y.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Choquette, K. D.

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

Ciftcioglu, B.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Coldren, L.

C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).

Coldren, L. A.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits (Wiley, 1995).

Corzine, S. W.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits (Wiley, 1995).

Cunningham, J. E.

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Darling, Z.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Debernardi, P.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

Ding, Y.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Dutta, N. K.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Eastman, L. F.

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

Fan, W. J.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Fischer, R. J.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Friedman, E. G.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Garg, A.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Geels, R. S.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

Giovane, L.

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

Gustavsson, J.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Gustavsson, J. S.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Hadley, G. R.

Haglund, Å.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Harris, J. S.

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Harton, A. V.

Hasnain, G.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Healy, S. B.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Henry, J. E.

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Hess, K.

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

Hofmann, W.

W. Hofmann, “High-speed buried tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. J. 2, 802–815 (2010).
[CrossRef]

Hu, J.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Huang, M.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Jain, M.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Ji, C.

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

Joel, A.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Joseph, J. R.

R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
[CrossRef]

Kang, S.-M.

Kern, A. M.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Knox, W. H.

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Ko, T.-S.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Kögel, B.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

Kroner, A.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

Kuksenkov, D. V.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
[CrossRef]

Kuo, H.-C.

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Kuo, Y.-K.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Lai, F.-I

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Laih, L.-H.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Laih, L.-W.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Larsson, A.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Lear, K. L.

R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[CrossRef]

K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
[CrossRef]

Lee, M. M.

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Lee, T. P.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Lester, L. F.

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

Liao, J. T. S.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Liu, Y.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

Livescu, G.

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Lu, T.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Mena, P. V.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
[CrossRef]

Michalzik, R.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

Modh, P.

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Mohammed, E. M.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Moore, D.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Morikuni, J. J.

Nakwaski, W.

W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997).
[CrossRef]

Ng, W.-C.

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

O’Keefe, S. S.

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

O’Reilly, E. P.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

O’Sullivan, T.

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Osinski, M.

W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997).
[CrossRef]

Ou, Y.

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

Palermo, S.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Ram-Mohan, L.-R.

I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
[CrossRef]

Reshotko, M. R.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Rinaldi, F.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

Safaisini, R.

R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
[CrossRef]

Sarmiento, T.

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Savidis, I.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Schaff, W. J.

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

Schneider, R. P.

K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
[CrossRef]

Scott, J. W.

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

Skold, M.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Söderström, D.

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Swirhun, S.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
[CrossRef]

Tai, K.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Temkin, H.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
[CrossRef]

C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).

Tong, C. Z.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Vo, S.

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Vukušsic, J.

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
[CrossRef]

Wang, J.

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

Wang, S.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Wang, S.-C.

Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Wang, Y. H.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Weir, B.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Westbergh, P.

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Wicks, G.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Wilmsen, C.

C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).

Wu, H.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Wu, I.-T.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Wyatt, K. W.

Wynn, J. D.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Xu, D. W.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Xue, J.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Yang, L.

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

Young, I. A.

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

Yu, C.-L.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

Zah, C. E.

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

Zha, L. J.

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Zhang, J.

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Appl. Phys. B (1)

Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991).
[CrossRef]

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995).
[CrossRef]

K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
[CrossRef]

Appl. Phys. Rev. (1)

I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001).
[CrossRef]

Electron. Lett. (1)

L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992).
[CrossRef]

IEEE Commun. Mag. (1)

I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010).
[CrossRef]

IEEE J. Quantum Electron. (5)

R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010).
[CrossRef]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[CrossRef]

Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005).
[CrossRef]

J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
[CrossRef]

G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).

P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009).
[CrossRef]

IEEE Photon. J. (1)

W. Hofmann, “High-speed buried tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. J. 2, 802–815 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005).
[CrossRef]

Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (3)

A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011).
[CrossRef]

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[CrossRef]

J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011).
[CrossRef]

Other (3)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon life-time on high speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. (accepted for publication).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits (Wiley, 1995).

C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the capture [η i(T)Ib ] and leakage [(1–η i(T)Ib ] of injected carriers in strained InGaAs quantum wells. E B(T), E L(T) and η i(T) are the temperature-dependent barrier bandgap energy, lasing bandgap energy and internal quantum efficiency, respectively. This figure depicts three out of the four LPD mechanisms; absorption losses in the top and the bottom DBRs are not shown here.

Fig. 2
Fig. 2

Schematic cross section of the high-speed 850-nm VCSEL used in the experiment. Benzo-cyclo-butene (BCB) is employed to reduce parasitic capacitance. Six layers are used for forming an oxide aperture (dark shading region). Other details of the device design can be found in Ref. [30].

Fig. 3
Fig. 3

Measurements used to extract temperature dependence of VCSEL parameters. (a) Output power and (b) voltage as a function Ib at five ambient temperatures. The inset in (b) shows variations of differential resistance R s with Ib . (c) Wavelength of the (LP01) mode versus Ta (circles); the linear fit is used to estimate the device temperature. (d) Threshold current as a function of Ta ; the numerical fit is used in the thermal model. (e) Dissipated power as a function of Ib for five Ta values used in part (a). (f) Slope efficiency versus output power at three different Ta values. The inset shows the derived dependence of ηi on temperature; the numerical fit is used in the thermal model.

Fig. 4
Fig. 4

Comparison of simulated (solid lines) and measured (symbols) values of (a) output power, (b) total dissipated power, and (c) device temperature as a function of Ib at three different ambient temperatures [Ta = 25, 55, and 85°C].

Fig. 5
Fig. 5

(a) Internal quantum efficiency, (b) threshold current, and (c) LPD coefficient K versus current at three ambient temperatures. The inset in (b) shows the derivative dI th/dIb as a function of Ib . (d) Dependence of four individual LPD coefficients on current at 25°C. Total K is also shown for comparison. Vertical dotted lines mark the region where K is relatively small.

Fig. 6
Fig. 6

Comparison of the various VCSEL heating mechanisms at three ambient temperatures. (a) Total LPD and QPD as a function of Ib ; (b) dependence of individual LPD contributions on Ib , and (c) contributions of LPD and QPD mechanisms to the increase in device temperature as a function Ib .

Tables (2)

Tables Icon

Table 1 Room Temperature Values of VCSEL Parameters

Tables Icon

Table 2 Linear Temperature Dependence of VCSEL Parameters ( Δ = T )

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P QPD = R s ( T a , I b ) I b 2 .
P LPD = K ( T ) I b .
P leak = E B ( T ) [ 1 η i ( T ) ] I b / q ,
P therm = [ E B ( T ) E L ( T ) ] η i ( T ) I b / q ,
P rec = { E L ( T ) η i ( T ) I b / q ; I b < I th , E L ( T ) η i ( T ) I th ( T ) / q ; I b > I th ,
P abs = η i ( T ) [ I b I th ( T ) ] [ α i ( T ) + α m B ( T ) ] E L ( T ) q [ α m T ( T ) + α m B ( T ) + α i ( T ) ] ; I b > I th .
E g ( AlAs ) = 3.099 0.885 × 10 3 T k 2 T k + 530 , E g ( GaAs ) = 1.519 0.5405 × 10 3 T k 2 T k + 204 .
E g x ( Al x Ga 1 x As ) = x E g ( AlAs ) + ( 1 x ) E g ( GaAs ) x ( 1 x ) ( 0.127 + 1.310 x ) .
P LPD = P therm + P rec + P leak + P abs = 1 q E B ( T ) I b 1 q E L ( T ) η i ( T ) [ I b I th ( T ) ] [ 1 α i ( T ) + α m B ( T ) α i ( T ) + α m T ( T ) + α m B ( T ) ] .
P tot = P QPD + P LPD = d V b ( T , I b ) d I b I b 2 + P LPD ,
T = T a + Δ T = T a + R th ( T ) P tot .
P ( T , I b ) = η i ( T ) [ I b I th ( T ) ] α m T ( T ) α m T ( T ) + α m B ( T ) + α i ( T ) ( h c q λ ( T ) ) .
η d ( T ) = q λ ( T ) h c SE ( T ) .
η d ( T ) = η i ( T ) α m T ( T ) [ α m T ( T ) + α m B ( T ) + α i ( T ) ] .

Metrics