Abstract

We demonstrate the first soft-glass hollow core photonic crystal fiber. The fiber is made from a high-index lead-silicate glass (Schott SF6, refractive index 1.82 at 500 nm). Fabricated by the stack-and-draw technique, the fiber incorporates a 7-cell hollow core embedded in a highly uniform 6-layer cladding structure that resembles a kagomé-like lattice. Effective single mode guidance of light is observed from 750 to 1050 nm in a large mode area (core diameter ~30 µm) with a low loss of 0.74 dB/m. The underlying guidance mechanism of the fiber is investigated using finite element modeling. The fiber is promising for applications requiring single mode guidance in a large mode area, such as particle guidance, fluid and gas filled devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  4. F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance of new science and technology,” Philos. Trans. R. Soc. London Ser. A 364(1849), 3439–3462 (2006).
    [CrossRef]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  7. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  8. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
    [PubMed]
  10. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
    [CrossRef] [PubMed]
  11. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  12. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103(18), 183902 (2009).
    [CrossRef] [PubMed]
  13. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
    [CrossRef] [PubMed]
  14. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [CrossRef] [PubMed]
  15. J. A. Savage, “Materials for infrared fibre optics,” Mater. Sci. Eng. Rep. 2(3), 99–137 (1987).
    [CrossRef]
  16. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
    [CrossRef]
  17. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
    [CrossRef]
  18. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [CrossRef]
  19. V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
    [PubMed]
  20. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
    [CrossRef]
  21. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. St. J. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
    [CrossRef] [PubMed]
  22. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
    [CrossRef]
  23. H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” presented at the 1st Workshop on Specialty Optical Fibers and Their Applications, Sao Pedro, Brazil, 20–22 Aug. 2008.
  24. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  25. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [CrossRef]
  26. J. A. Harrington, Infrared Fibers and Their Applications (SPIE-The International Society for Optical Engineering, 2004).
  27. X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
    [CrossRef]
  28. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
    [CrossRef]
  29. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
    [CrossRef]
  30. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [CrossRef] [PubMed]
  31. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17972 .
    [CrossRef] [PubMed]
  32. JCMwave V.2.3.4.beta, JCMwave GmbH, Germany http://www.jcmwave.com/
  33. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and laser,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

2011

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

2010

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

2009

2008

2007

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

2006

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance of new science and technology,” Philos. Trans. R. Soc. London Ser. A 364(1849), 3439–3462 (2006).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

2003

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1994

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

1987

J. A. Savage, “Materials for infrared fibre optics,” Mater. Sci. Eng. Rep. 2(3), 99–137 (1987).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and laser,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abdolvand, A.

Adam, J.-L.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[CrossRef] [PubMed]

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Asimakis, S. A.

Barton, G. W.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Bassett, I. M.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Benabid, F.

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance of new science and technology,” Philos. Trans. R. Soc. London Ser. A 364(1849), 3439–3462 (2006).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Brilland, L.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Chen, J. S. Y.

Chugreev, A. V.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103(18), 183902 (2009).
[CrossRef] [PubMed]

Coulombier, Q.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Cox, F.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Désévédavy, F.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[CrossRef]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Euser, T. G.

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Frampton, K. E.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Garbos, M. K.

George, A. K.

Hänsch, T. W.

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Holzwarth, R.

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Houizot, P.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Hundertmark, H.

Jha, A.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

Jiang, X.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Kaminski, C. F.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
[PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Kumar, V. V.

Large, M. C. J.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Large, M. J. C.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Light, P. S.

Lousteau, J.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

Lwin, R.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and laser,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Monro, T. M.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Moore, R. C.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103(18), 183902 (2009).
[CrossRef] [PubMed]

Nold, J.

Omenetto, F.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Pla, J.

Podlipensky, A.

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

Ponrathnam, S.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Pujari, N. S.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Rammler, S.

Reeves, W. H.

Renversez, G.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Richards, B.

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. A. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P.

Russell, P. St. J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. St. J. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
[CrossRef] [PubMed]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103(18), 183902 (2009).
[CrossRef] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17972 .
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Savage, J. A.

J. A. Savage, “Materials for infrared fibre optics,” Mater. Sci. Eng. Rep. 2(3), 99–137 (1987).
[CrossRef]

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and laser,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Smektala, F.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Taylor, A.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Traynor, N.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Troles, J.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

van Eijkelenborg, M. A.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Vasilief, I.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Warren-Smith, S. C.

Whyte, G.

Wilken, T.

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and laser,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Sel. Top. Quantum Electron.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007).
[CrossRef]

J. Appl. Phys.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[CrossRef]

J. Lightwave Technol.

Mater. Sci. Eng. Rep.

J. A. Savage, “Materials for infrared fibre optics,” Mater. Sci. Eng. Rep. 2(3), 99–137 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari, I. M. Bassett, R. Lwin, and G. W. Barton, “Microstructured polymer optical fibres: new opportunities and challenges,” Mol. Cryst. Liq. Cryst. 446(1), 219–231 (2006).
[CrossRef]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. J. C. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun. 273(1), 133–137 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32(11), 1532–1539 (2010).
[CrossRef]

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009).
[CrossRef]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance of new science and technology,” Philos. Trans. R. Soc. London Ser. A 364(1849), 3439–3462 (2006).
[CrossRef]

Phys. Rev. Lett.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103(18), 183902 (2009).
[CrossRef] [PubMed]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

J. A. Harrington, Infrared Fibers and Their Applications (SPIE-The International Society for Optical Engineering, 2004).

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” presented at the 1st Workshop on Specialty Optical Fibers and Their Applications, Sao Pedro, Brazil, 20–22 Aug. 2008.

JCMwave V.2.3.4.beta, JCMwave GmbH, Germany http://www.jcmwave.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEMs of three SF6-glass HC-PCFs with pitch (a) Fiber 1: 7.2 µm; (b) Fiber 2: 7.6 µm and (c) Fiber 3: 8.8 µm. The air-filling-fraction ranges from 85.3% to 88.0%. (d)-(f) Enlarged SEM images of the core structure. Core diameters are (d) Fiber 1: 29.2 ± 0.7 µm; (e) Fiber 2: 29.0 ± 0.5 µm and (f) Fiber 3: 33.3 ± 1.1 µm.

Fig. 2
Fig. 2

(a)–(c) Experimental near-field profiles of guided mode and normalized intensity profiles taken through the mode centre. The lengths of fiber used were 1.59, 1.52 and 2.27 m, respectively. The small bubble-like artefacts originate from flaws in the CCD camera. (d)–(f) Transmission and loss spectra of core mode. The transmission window and minimum loss in each fiber are (d) 800-1050 nm, 0.84 dB/m; (e) 750-1025 nm, 0.74 dB/m and (f) 725-1000 nm, 0.98 dB/m.

Fig. 3
Fig. 3

Results of finite-element calculations of the modes guided in Fiber 2. The structure was extracted from the SEM image (Fig. 1(b)). (a) The meshed two-row air-hole structure of the Fiber 2. At 830 nm wavelength, (b) the LP01 mode (c) the LP11 mode: (d) the LP02 mode (e) the LP31 mode.

Tables (2)

Tables Icon

Table 1 Structural Parameters of the SF6 HC-PCFs

Tables Icon

Table 2 Calculated Confinement Losses And Effective Indices of the LP01, LP11, LP02 and LP31 Modes in a SF6 HC-PCF with Two Rings of Hollow Channels Around the Core

Metrics