Abstract

We report the design, fabrication, photonic packaging and the characterization of a silicon polarization independent optical tunable filter circuit with fiber assembly. We demonstrate the polarization transparent filter characteristics with an insertion loss of ~13.4 dB, an extinction ratio of ~20 dB, and a 3dB bandwidth of 0.2 nm. The tuning range is of ~11.72 nm, along with the tuning speed of less than 400 μs. The tuning efficiency is ~0.23 nm/mW. The use of polarization diversity scheme and the silicon photonic packaging bridges the gap between the silicon photonic circuits and the real applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, F. Xia, S. Assefa, and W. M. J. Green, “Silicon micro-resonators for on-chip optical networks,” Proceeding of CLEO/QELS, 1 – 2 (2008).
  2. Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19(7), 6462–6470 (2011).
    [CrossRef] [PubMed]
  3. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” in the 33th European Conference on Optical Communication, ECOC (2007).
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  5. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  6. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
    [CrossRef] [PubMed]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [CrossRef] [PubMed]
  8. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  9. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  10. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008).
    [CrossRef] [PubMed]
  11. J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
    [CrossRef]
  12. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [CrossRef] [PubMed]
  13. L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
    [CrossRef]
  14. Y. Lin, C. Eichele, and F. G. Shi, “Effect of welding sequence on welding-induced-alignment-distortion in packaging of butterfly laser diode modules: simulation and experiment,” J. Lightwave Technol. 23(2), 615–623 (2005).
    [CrossRef]
  15. J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
    [CrossRef] [PubMed]
  16. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1679 (2002).
    [CrossRef]
  17. J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
    [PubMed]
  18. J. Zhang, H. Zhang, S. Chen, M. Yu, G. Lo, and D. Kwong, “A polarization diversity circuit for silicon photonics,” in Optical Fiber Communication Conference, (2011).
  19. BeamPROP, Rsoft Inc., Research Software, http://www.rsoftdesign.com/ .

2011 (3)

2010 (2)

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

2008 (2)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1679 (2002).
[CrossRef]

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Battista Preve, G.

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

Bogaerts, W.

Chen, L.

Chen, Y. K.

Ding, Y.

Doerr, C. R.

Dumon, P.

Eichele, C.

Fukuda, H.

Haus, H. A.

Huang, D.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
[CrossRef] [PubMed]

Itabashi, S.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kwong, D. L.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Landles, K.

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

Li, C.

J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
[PubMed]

Lin, Y.

Liow, T. Y.

Liu, L.

Lo, G.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Lo, G. Q.

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
[PubMed]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1679 (2002).
[CrossRef]

Ou, H.

Peucheret, C.

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Pu, M.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Rosin, T.

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

Shi, F. G.

Shinojima, H.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1679 (2002).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Song, J. H.

J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
[PubMed]

Taillaert, D.

Tekin, T.

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

Tsuchizawa, T.

Van Thourhout, D.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
[CrossRef] [PubMed]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
[CrossRef] [PubMed]

Xu, J.

Yamada, K.

Yu, M.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

Zhang, H.

J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
[PubMed]

Zhang, J.

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[CrossRef] [PubMed]

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

J. H. Song, J. Zhang, H. Zhang, C. Li, and G. Q. Lo, “Si-photonics based passive device packaging and module performance, Opt. Express (submitted to).
[PubMed]

Zhang, X.

Zimmermann, L.

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1679 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

L. Zimmermann, G. Battista Preve, T. Tekin, T. Rosin, and K. Landles, “Packaging and assembly for integrated photonics–a review of the ePIXpack photonics packaging platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Other (4)

J. Zhang, H. Zhang, S. Chen, M. Yu, G. Lo, and D. Kwong, “A polarization diversity circuit for silicon photonics,” in Optical Fiber Communication Conference, (2011).

BeamPROP, Rsoft Inc., Research Software, http://www.rsoftdesign.com/ .

Y. A. Vlasov, F. Xia, S. Assefa, and W. M. J. Green, “Silicon micro-resonators for on-chip optical networks,” Proceeding of CLEO/QELS, 1 – 2 (2008).

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” in the 33th European Conference on Optical Communication, ECOC (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the silicon polarization independent optical tunable filter based on microring resonator.

Fig. 2
Fig. 2

(a) Top-view optical micrograph of the fabricated chip. Inset (i) shows the zoom-in view optical micrograph of the polarization splitter. Inset (ii) shows the zoom-in view image of the fabricated microring resonator. (b), (c), (d), (e) Scanning electron micrograph (SEM) of the invert tapered mode size converter, the mode-coupling based polarization splitter, the main transition region of polarization rotator, and the TiN micro-heater with Al electrodes.

Fig. 3
Fig. 3

(a) Schematic of the packaging structure. Inset (i) shows the top-view optical micrograph of the fiber-to-chip coupling. (b) Packaged sub-assembly using YAG laser welding technique. (c) Full packaging circuit of the silicon optical tunable filter with fiber assembly.

Fig. 4
Fig. 4

Measured spectra of the packaged silicon optical tunable filter upon various applied voltage.

Fig. 5
Fig. 5

The output wavelength of the optical tunable filter as a function of the power consumption.

Fig. 6
Fig. 6

The estimated temperature change ΔT as a function of the power consumption.

Fig. 7
Fig. 7

2 MHz electrical waveform and the resulting optical waveform of the silicon optical tunable filter.

Tables (1)

Tables Icon

Table 1 Optical Specifications of the Packaged Silicon Optical Tunable Filter

Metrics