Abstract

We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima vary along the nanorod’s length and whose wavelength becomes compressed towards the ends of the nanorod. Theoretical calculations modelling the surface plasmon response of the silver nanorod-silicon nitride system show the importance of including retardation and substrate effects in order to describe accurately the energy dispersion of the resonant modes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980), Chap. 1.
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986), Chaps. 2 and 3.
  3. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  4. D. Sarid and W. Channeler, Surface Plasmons Theory, Mathematica Modeling, and Applications (Cambridge University Press, 2010), Chap. 12.
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  6. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [CrossRef]
  7. P. C. Tiemeijer, “Operation modes of a TEM monochromator,” Inst. Phys. Conf. Ser. (1999), Vol. 161, pp. 191–194.
  8. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, 1996), Chap. 2.
  9. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
    [CrossRef]
  10. J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009).
    [CrossRef] [PubMed]
  11. W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009).
    [CrossRef] [PubMed]
  12. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
    [CrossRef]
  13. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
    [CrossRef]
  14. M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
    [CrossRef] [PubMed]
  15. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
    [CrossRef] [PubMed]
  16. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
    [CrossRef] [PubMed]
  17. M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
    [CrossRef] [PubMed]
  18. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, 1996), Chaps. 37 and 38.
  19. C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
    [CrossRef] [PubMed]
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  21. E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
    [CrossRef] [PubMed]
  22. N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
    [CrossRef]
  23. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
    [CrossRef] [PubMed]
  24. R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
    [CrossRef]
  25. K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
    [CrossRef]
  26. The silver nanowires used in this study were purchased from the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. NRF is part of School of Engineering and Applied Science at Washington University in St. Louis.
  27. E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
    [CrossRef]
  28. B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
    [CrossRef] [PubMed]
  29. N. E. Christensen, “The band structure of silver and optical interband transitions,” Phys. Status Solidi B 54(2), 551–563 (1972).
    [CrossRef]
  30. B. E. Sernelius, Surface Modes in Physics (Wiley, 2001), Chap. 7.
  31. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999), Chap. 6.
  32. J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
    [CrossRef]
  33. W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
    [CrossRef]
  34. R. F. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107(8), 575–586 (2007).
    [CrossRef] [PubMed]

2011 (1)

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

2010 (3)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

2009 (6)

J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009).
[CrossRef] [PubMed]

W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009).
[CrossRef] [PubMed]

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
[CrossRef] [PubMed]

2008 (3)

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[CrossRef]

2007 (5)

R. F. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107(8), 575–586 (2007).
[CrossRef] [PubMed]

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

2006 (2)

N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
[CrossRef]

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

2004 (1)

B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

1972 (1)

N. E. Christensen, “The band structure of silver and optical interband transitions,” Phys. Status Solidi B 54(2), 551–563 (1972).
[CrossRef]

Adam, P.-M.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Agarwal, A.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Bao, K.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Benner, G.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

Bijeon, J.-L.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Bosman, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Botton, G. A.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Chen, C. H.

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

Christensen, N. E.

N. E. Christensen, “The band structure of silver and optical interband transitions,” Phys. Status Solidi B 54(2), 551–563 (1972).
[CrossRef]

Chu, H.-S.

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

Chu, M.-W.

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Coronado, E. A.

E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
[CrossRef] [PubMed]

Cortie, M. B.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Couillard, M.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

de la Chapelle, M.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Deng, J.-P.

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Egerton, R. F.

R. F. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107(8), 575–586 (2007).
[CrossRef] [PubMed]

Encina, E. R.

E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
[CrossRef] [PubMed]

Essers, E.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

Ewe, W.-B.

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Gómez-Medina, R.

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

Grand, J.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Grogger, W.

B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
[CrossRef] [PubMed]

Gu, L.

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Hofer, F.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

Hohenester, U.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

Höschen, R.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

Keast, V. J.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Khan, I.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Koch, C. T.

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Koh, A. L.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Korte, K. E.

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[CrossRef]

Kothleitner, G.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
[CrossRef] [PubMed]

Kotov, N.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Kumacheva, E.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Li, E.-P.

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Liz-Marzán, L. M.

J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009).
[CrossRef] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Luk’yanchuk, B. S.

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

Maaroof, A. I.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Maier, S. A.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Mandler, T.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

Mansfield, J. F.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Matijevic, M.

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

McComb, D. W.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Meyer, S.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

Mittmann, D.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

Mou, C.-Y.

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

Myroshnychenko, V.

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

Nakano, M.

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
[CrossRef]

Nelayah, J.

N'Gom, M.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Nordlander, P.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Norris, T. B.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Pastoriza-Santos, I.

J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009).
[CrossRef] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Perassi, E. M.

E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
[CrossRef] [PubMed]

Polman, A.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Ringnalda, J.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Rossouw, D.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Royer, P.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Rühle, M.

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

Schaffer, B.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
[CrossRef] [PubMed]

Schnell, M.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

Sigle, W.

Skrabalak, S. E.

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[CrossRef]

Smith, W. E.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Suzuki, T.

N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
[CrossRef]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Trügler, A.

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

van Aken, P. A.

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Vial, A.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Vickery, J.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Watanabe, M.

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Xia, Y.

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[CrossRef]

Yamamoto, N.

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
[CrossRef]

Zaluzec, N. J.

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010).
[CrossRef]

J. Mater. Chem. (1)

K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008).
[CrossRef]

J. Phys. Chem. A (1)

E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009).
[CrossRef] [PubMed]

Microsc. Microanal. (1)

C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006).
[CrossRef] [PubMed]

N. J. Phys. (1)

R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008).
[CrossRef]

Nano Lett. (4)

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009).
[CrossRef] [PubMed]

M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007).
[CrossRef]

Nat. Phys. (1)

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

N. E. Christensen, “The band structure of silver and optical interband transitions,” Phys. Status Solidi B 54(2), 551–563 (1972).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Surf. Interface Anal. (1)

N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006).
[CrossRef]

Ultramicroscopy (3)

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010).
[CrossRef]

B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004).
[CrossRef] [PubMed]

R. F. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107(8), 575–586 (2007).
[CrossRef] [PubMed]

Other (9)

B. E. Sernelius, Surface Modes in Physics (Wiley, 2001), Chap. 7.

J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999), Chap. 6.

The silver nanowires used in this study were purchased from the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. NRF is part of School of Engineering and Applied Science at Washington University in St. Louis.

D. Sarid and W. Channeler, Surface Plasmons Theory, Mathematica Modeling, and Applications (Cambridge University Press, 2010), Chap. 12.

H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980), Chap. 1.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986), Chaps. 2 and 3.

P. C. Tiemeijer, “Operation modes of a TEM monochromator,” Inst. Phys. Conf. Ser. (1999), Vol. 161, pp. 191–194.

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, 1996), Chap. 2.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, 1996), Chaps. 37 and 38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Bright-field (BF) zero-loss image of a 666 ± 3 nm long silver nanorod, with 47 ± 3 nm diameter. (b) Electron energy-loss spectra (unprocessed) acquired at the positions marked in (a) of matching colour. Spectra have been obtained using a selected-area approach [18] and shown displaced on the intensity axis for clarity.

Fig. 2
Fig. 2

EFTEM series of a single silver nanorod (seen in Fig. 1) showing a clear standing-wave pattern due to surface plasmon resonance. The energy selecting slit was 0.23 eV. The images shown here are a subset of the total series and show clear modes from the fundamental (m = 1 mode) to the m = 6 mode. The intensity of the energy-loss maps is shown as a temperature colour scale. Due to the strong variation in maximum energy-loss intensity and for better visibility the colour scale has been scaled independently for all 6 images.

Fig. 3
Fig. 3

Experimental and calculated dispersion curves for a silver nanorod of length L = 666 ± 3 nm and diameter d = 47 ± 3 nm. (a) Energy loss versus the real part of the wavenumber k extracted from experimental data of Fig. 2 (green circles refer to values from the top part of each EFTEM image of the nanorod, red crosses refer to values from the bottom part of each EFTEM image the nanorod) and (i) compared with simulation of an infinitely long silver nanorod (50 nm in diameter) in vacuum, neglecting retardation (dashed pink line), (ii) in vacuum but now considering the effect of retardation (dashed blue line) and (iii) considering both the effect of retardation and the presence of the substrate on which the nanorod is resting (black dots). (b) Energy loss versus the imaginary part of the modulus of the wavenumber k. The colour scheme used is the same as in (a).

Fig. 4
Fig. 4

Decay length D as a function of energy loss for the SP resonant modes probed experimentally in Fig. 2. Horizontal error bars are defined by the 0.23 eV energy filter window. The dashed grey line fits a power law function with exponent −1.

Fig. 5
Fig. 5

Plot of the intensity (area of the fitted Gaussian of the individual SP peaks in the spectrum of Fig. 1(b) in blue and red) at the right tip (red circles) and left tip (blue circles) of the nanorod as a function of energy loss. It is clear that the intensity follows an exponential decay, with exponent of approximately −2. The error in the measurement of intensity is not shown as it is smaller than the size of the markers.

Fig. 6
Fig. 6

(a) EFTEM map of mode m = 6 with energy loss window 2.5 ± 0.1 eV. The antinode spacing (half-wavelength λsp /2) between adjacent maxima of intensity (antinodes) of the SP standing wave varies along the nanorod. The spacing shown at the top of Fig. 5(a) decrease as the wave approaches the ends of the nanorod. (b) Dispersion relation (energy E (in eV) as a function of wavenumber k (in nm−1), k = 2π/λsp ) measured from the experimental EFTEM series of Fig. 2 showing that for a given energy, i.e. for a given resonant mode, the wavenumber k does not have a unique value. Data points indicated in red correspond to the spacing between antinodes (maxima of intensity), whereas data points indicated in black crosses correspond to nodes (minima of intensity). The numbers in brackets indicate the mode number m. The dashed grey lines are a guide to the eye.

Metrics