Abstract

We propose a novel system of dual-wavelength micro-cavity based on the coupling between a photonic crystal membrane (PCM); operating at the Γ- point of the Brillouin zone, with a Fabry-Perot vertical cavity (FP). The optical coupling, which can be adjusted by the overlap between both optical modes, leads to the generation of two hybrid modes separated by a frequency difference which can be tuned using micro-opto-electromechanical structures. The proposed dual-wavelength micro-cavity is attractive for application where dual-mode behaviour is desirable as dual-lasing, frequency conversion. An analytical model, numerical (FDTD) and transfer matrix method investigations are presented.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  2. A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
    [CrossRef]
  3. G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
    [CrossRef]
  4. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
    [CrossRef]
  5. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
    [CrossRef]
  6. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
    [CrossRef] [PubMed]
  7. D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
    [CrossRef]
  8. F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
    [CrossRef]
  9. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
    [CrossRef]
  10. K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
    [CrossRef]
  11. R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
    [CrossRef]
  12. J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
    [CrossRef]
  13. K. S. Yee, “Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  14. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  15. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]

2010 (2)

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

2006 (1)

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

2005 (1)

2003 (2)

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

1999 (3)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

1998 (2)

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

1994 (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

1992 (2)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Aktsipetrov, O.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Andreani, L.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Andreani, L. C.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Armitage, A.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Astratov, V.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Astratov, V. N.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Baxter, D.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Ben Bakir, B.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Carlin, J. F.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

Di Cioccio, L.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Dolgova, T.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Fedeli, J. M.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Fedyanin, A.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Fisher, T. A.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Gusev, D.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Haus, H.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Houdré, R.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

Ilegems, M.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Isu, T.

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kaliteevski, M.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Kaliteevski, M. A.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Kavokin, A.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Kavokin, A. V.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kitada, T.

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Kusiaku, K.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

Leclercq, J. L.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Letartre, X.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Martemyanov, M.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Morita, K.

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Mouette, J.

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Noda, S.

Oesterle, U.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

Panzarini, G.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Pellandini, P.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

Roberts, J.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Roberts, J. S.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Rojo-Romeo, P.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

Romeo, P. R.

Seassal, C.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Seassal, Ch.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Skolnick, M.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Skolnick, M. S.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Soboleva, I.

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

Stanley, R. P.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

Takahashi, T.

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Tanaka, F.

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Viktorovitch, P.

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Vladimirova, M.

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Vladimirova, M. R.

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Weisbuch, C.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Whittaker, D. M.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yokoyama, M.

Zussy, M.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65(16), 2093–2095 (1994).
[CrossRef]

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oesterle, and M. Ilegems, “The dual wavelength bi-vertical cavity surface-emitting laser,” Appl. Phys. Lett. 75(7), 908–910 (1999).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong sum frequency generation in a GaAs/AlAs coupled multilayer cavity grown on a (113)B-oriented GaAs substrate,” Jpn. J. Appl. Phys. 49(4), 04DG01 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

D. Gusev, I. Soboleva, M. Martemyanov, T. Dolgova, A. Fedyanin, and O. Aktsipetrov, “Enhanced second-harmonic generation in coupled microcavities based on all-silicon photonic crystals,” Phys. Rev. B 68(23), 233303 (2003).
[CrossRef]

A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57(23), 14877–14881 (1998).
[CrossRef]

G. Panzarini, L. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. Kavokin, M. Vladimirova, and M. Kaliteevski, “Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting,” Phys. Rev. B 59(7), 5082–5089 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Kusiaku, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Multi-resonant microresonators for optical frequency conversion,” Proc. SPIE 7728, 77280K (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13(7), 645–669 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representations of a) the dual-λ cavity comprising a FP and a PCM membrane b) the dual-λ cavity system.

Fig. 2
Fig. 2

Spectral response of individual resonators and resulting dual-λ resonances.

Fig. 3
Fig. 3

Coupled mode theory: Calculated spectral response of the dual-mode cavity (Eq. (3)) for two different optical thicknesses d and Qc = ω0τc/2 = 5000.

Fig. 4
Fig. 4

Calculated transmission spectra of s, given by Eq. (3) for different R values, for a 2λ0 thick cavity and Qc = ω0τc/2 = 5000.

Fig. 5
Fig. 5

Hybrid modes resonance wavelengths (a) and quality factors (b) as a function of the half- cavity thickness, calculated with Eq. (3).

Fig. 6
Fig. 6

a) PCM Reflectivity spectrum and b) the resonant mode field profile (the black line encloses InP region, the dot lines mark out the air slit zones).

Fig. 7
Fig. 7

Hybrid modes resonance wavelengths (a) and their quality factor (b) evolution as function of the spacer thickness. Comparison between numerical 2D-FDTD and TMM-CMT methods.

Fig. 8
Fig. 8

The TE polarisation electric field maps of dual micro-cavity modes (a: λ1 = 1.5396 µm, b:λ2 = 1.5429 µm).

Fig. 9
Fig. 9

Hybrid modes (a) and the difference frequency (b) evolution as function of the Half-cavity thickness for 21µm lateral sized dual-mode cavity.

Fig. 10
Fig. 10

Dispersion characteristic of the PCM mode of the dual-λ cavity at point A (left) and B (right).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

da dt = ( 0 1 τ 0 1 τ c ) a + Ke 1 C + 1 + Ke 2 C + 2 + A 0 e j ( ωt )
C + i = re j λ d C i = r α ¯ C i
s 1 α r 1 ω ω 0 j τ 0 j τ c α + r α r
ω' ω 0 1 = ± 1 2 pπQ c
R R 0 = 1 2 p π Δ ω ω 0 = 1 8 p π Q c

Metrics