Abstract

We propose an engineered microfiber with nano-scale slots that produce ultra-flattened and low dispersion of ±10 ps/(nm·km) over a 340 nm wavelength range. It is comparable with the results in photonic crystal fibers and planar slot waveguides, but can be hardly realized in conventional circular microfibers. By confining the light in a low nonlinearity air slot, the nonlinear coefficient can be greatly reduced. With the unique geometry and excellent performance, the slot microfiber offers large potential in miniature fiber devices for high-speed telecom applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010).
    [CrossRef] [PubMed]
  2. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005).
    [CrossRef] [PubMed]
  3. N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
    [CrossRef]
  4. K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14(15), 6870–6878 (2006).
    [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004).
    [CrossRef] [PubMed]
  6. T. Niemi, G. Genty, M. Lehtonen, and H. Ludvigsen, “Infrared supercontinuum generated in short tapered fiber by pumping around second zero-dispersion wavelength,” in 2003 Conference on Lasers and Electro-Optics Europe, 2003. CLEO/Europe (IEEE Standards Office, 2003), p. 219.
  7. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  8. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  9. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  11. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [CrossRef] [PubMed]
  12. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  13. D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
    [CrossRef]
  14. D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
    [CrossRef] [PubMed]
  15. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009).
    [CrossRef] [PubMed]
  16. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, 2001).
  18. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).
  19. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, CA, 2008).

2010

2009

2008

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

2006

K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14(15), 6870–6878 (2006).
[CrossRef] [PubMed]

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

2005

2004

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2000

Abdur Razzak, S. M.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Afshar V, S.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Beausoleil, R. G.

Begum, F.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Birks, T. A.

Brambilla, G.

Chavan, D.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Cox, D.

de Man, S.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Deladi, S.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Elwenspoek, M. C.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Feng, J.

Finazzi, V.

Florous, N.

Gadgil, V. J.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gruca, G.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Gundu, K. M.

Hai, N. H.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Heeck, K.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Iannuzzi, D.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Kaijage, S. F.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Kinjo, T.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Kolesik, M.

Koshiba, M.

Kou, J. L.

Lee, K. S.

Lou, J. Y.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, Y. Q.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Moloney, J. V.

Monro, T. M.

Namihira, Y.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Rector, J. H.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Renna, F.

Richardson, D.

Russell, P. S. J.

Saitoh, K.

Sanders, R. G. P.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Schreuders, H.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Slaman, M.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Tong, L. M.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, Q. J.

Willner, A. E.

Xu, F.

Ye, L.

Yue, Y.

Zhang, L.

Zou, N.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Appl. Phys. Lett. 88(5), 053501 (2006).
[CrossRef]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010).
[CrossRef] [PubMed]

K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005).
[CrossRef] [PubMed]

K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14(15), 6870–6878 (2006).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004).
[CrossRef] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009).
[CrossRef] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Rev.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. Abdur Razzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15(2), 91–96 (2008).
[CrossRef]

Rev. Sci. Instrum.

D. Chavan, G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, “Ferrule-top atomic force microscope,” Rev. Sci. Instrum. 81(12), 123702 (2010).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, 2001).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).

T. Niemi, G. Genty, M. Lehtonen, and H. Ludvigsen, “Infrared supercontinuum generated in short tapered fiber by pumping around second zero-dispersion wavelength,” in 2003 Conference on Lasers and Electro-Optics Europe, 2003. CLEO/Europe (IEEE Standards Office, 2003), p. 219.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, CA, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross section of (a) a single-slot microfiber and (b) a double-slot microfiber; Modal power distribution of the quasi-TE mode in (c) a single-slot microfiber at d = 1600 nm and W = 100 nm and (d) a double-slot microfiber at d = 1720 nm, W = 90 nm and t = 400 nm in air.

Fig. 2
Fig. 2

The calculated dispersion profile of a CMF with different diameters.

Fig. 3
Fig. 3

Color coded dispersion profile evolution in a single-slot microfiber by tuning (a) the slot width at d = 1.6 μm and (b) the fiber diameter at W = 100 nm. The dotted lines in (a)-(b) are the ZDW profiles. (c) Two selected flattened near-zero dispersion profiles with optimized parameters.

Fig. 4
Fig. 4

Color coded dispersion profiles evolution in a double-slot microfiber by tuning (a) the slot width at d = 1.8 μm and t = 400 nm, (b) the fiber diameter at W = 85 nm and t = 400 nm, (c) the slot pitch at d = 1.8 μm and W = 85 nm. The dotted lines in (a)-(c) are the ZDW profiles. (d) Three selected flattened near-zero dispersion profiles with optimized parameters.

Fig. 5
Fig. 5

Nonlinear coefficient profiles of a CMF with different diameters.

Fig. 6
Fig. 6

Nonlinear coefficient profiles of (a) a single slot miniaturized fiber and (b) a double slot miniaturized fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D ( λ ) = λ c d 2 n e f f d λ 2
γ = k ( ε 0 μ 0 ) n 2 ( x , y ) n 2 ( x , y ) [ 2 | e | 4 + | e 2 | 2 ] d A 3 | ( e × h * ) . z d A | 2

Metrics