Abstract

We demonstrate optical gradient force-tunable directional couplers in free-standing silicon nitride slot waveguides. Utilizing device geometries optimized for strong optomechanical interactions allows us to control the optical transmission without the aid of a cavity. Static, wideband tuning as well as low-power optical modulation is achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  3. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [CrossRef]
  4. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
    [CrossRef]
  5. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [CrossRef] [PubMed]
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  7. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  8. R. Soref, ” Recent Advances in Silicon Photonic Components,” in Integrated Photonics Research and Applications/Nanophotonics for Information Systems, Technical Digest (Optical Society of America, 2005), paper JWA1.
  9. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  11. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
    [CrossRef]
  12. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
    [CrossRef]
  13. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
    [CrossRef]
  14. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
    [CrossRef] [PubMed]
  15. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect,” Opt. Lett. 30(17), 2254–2256 (2005).
    [CrossRef] [PubMed]
  16. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [CrossRef]
  17. P. Dong, L. Chen, Q. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett. 34(15), 2315–2317 (2009).
    [CrossRef] [PubMed]
  18. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [CrossRef]
  19. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
    [CrossRef] [PubMed]
  20. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
    [CrossRef] [PubMed]
  21. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  22. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  23. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
    [CrossRef] [PubMed]
  24. W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
    [CrossRef]
  25. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [CrossRef] [PubMed]
  26. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011).
    [CrossRef] [PubMed]
  27. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
    [CrossRef]
  28. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
    [CrossRef] [PubMed]
  29. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
    [CrossRef] [PubMed]
  30. C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
    [CrossRef]
  31. C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
    [CrossRef] [PubMed]
  32. M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
    [CrossRef]
  33. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [CrossRef] [PubMed]
  34. S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
    [CrossRef]
  35. K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
    [CrossRef]
  36. W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
    [CrossRef] [PubMed]
  37. W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
    [CrossRef]

2011 (1)

2010 (4)

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
[CrossRef]

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

2009 (9)

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

P. Dong, L. Chen, Q. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett. 34(15), 2315–2317 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
[CrossRef]

2007 (3)

2006 (4)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (2)

2003 (1)

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

2002 (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

2000 (1)

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Almeida, V. R.

Anderson, P. A.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Barrios, C. A.

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Bienstman, P.

Bogaerts, W.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Cao, W.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Capasso, F.

Chen, L.

P. Dong, L. Chen, Q. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett. 34(15), 2315–2317 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Chi, H.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

Craighead, H. G.

S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Dong, P.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Dumon, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Fang, Q.

Fathpour, S.

Ferraro, M. S.

Fong, K. Y.

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Goldhar, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Ho, P.-T.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Hodson, T.

Ibanescu, M.

Ibrahim, T. A.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jalali, B.

Joannopoulos, J. D.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Johnson, S. G.

Kim, Y.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Kokubun, Y.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

Kwong, D. L.

Lee, S.

Li, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Li, M.

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
[CrossRef]

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
[CrossRef]

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Liow, T. Y.

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Lo, G. Q.

Loncar, M.

Luyssaert, B.

Manipatruni, S.

Ndi, F. C.

Ouzounov, D. G.

Painter, O.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Pan, W.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

Panepucci, R. R.

Parpia, J. M.

S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
[CrossRef]

Pernice, W.

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
[CrossRef]

Pernice, W. H.

Pernice, W. H. P.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Povinelli, M. L.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Prather, D. W.

Pruessner, M. W.

Rabinovich, W. S.

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Rooks, M.

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

Sekaric, L.

Smythe, E. J.

Song, J.

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Stievater, T. H.

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Tang, H.

M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
[CrossRef]

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

Tang, H. X.

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
[CrossRef]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Tao, S. H.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Toulouse, J.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Verbridge, S. S.

S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
[CrossRef]

Vlasov, Y.

Wiaux, V.

Wiederhecker, G. S.

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Xia, F.

Xiong, C.

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Xu, Q.

P. Dong, L. Chen, Q. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Opt. Lett. 34(15), 2315–2317 (2009).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yu, M. B.

Appl. Phys. Lett. (6)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80(3), 416 (2002).
[CrossRef]

W. H. P. Pernice, M. Li, and H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95(12), 123507 (2009).
[CrossRef]

C. Xiong, W. Pernice, M. Li, M. Rooks, and H. Tang, “Adiabatic embedment of nanomechanical resonators in photonic microring cavities,” Appl. Phys. Lett. 96(26), 263101 (2010).
[CrossRef]

M. Li, W. Pernice, and H. Tang, “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities,” Appl. Phys. Lett. 97(18), 183110 (2010).
[CrossRef]

S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett. 92(1), 013112 (2008).
[CrossRef]

K. Y. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14(1), 74–76 (2002).
[CrossRef]

J. Appl. Phys. (1)

W. H. P. Pernice, M. Li, and H. X. Tang, “Tang, “Photothermal actuation in nanomechanical waveguide devices,” J. Appl. Phys. 105(1), 014508 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Nanotechnol. (1)

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[CrossRef]

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Nature (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Opt. Express (9)

M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
[CrossRef] [PubMed]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
[CrossRef] [PubMed]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[CrossRef] [PubMed]

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (1)

R. Soref, ” Recent Advances in Silicon Photonic Components,” in Integrated Photonics Research and Applications/Nanophotonics for Information Systems, Technical Digest (Optical Society of America, 2005), paper JWA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Mode profile of a silicon nitride slot waveguide with a dielectric beam cross-section of 330 × 500nm2. Shown is the magnitude of the Ex component in (V/m) for waveguides separated by a gap of 200nm. (b) The dependence of the effective index of the slot waveguide mode on the width of the dielectric beams. Shown are simulations for waveguide separations from 50nm to 400nm.

Fig. 2
Fig. 2

(a) Numerical simulation of the group index of a silicon nitride slot waveguide in dependence of wavelength. A slot gap of 200nm is assumed. (b) Calculation of the optical force between two coupled silicon nitride beams in dependence of waveguide separation, normalized to the input power and the beam length. By decreasing the waveguide width the magnitude of the optical force is increased, while a reduced gap leads to enhanced optical force.

Fig. 3
Fig. 3

(a) Design of a photonic circuit for a tunable coupler employing coupled slot modes. The coupling length is tuned by varying the slot gap. The released parts of the waveguide cross the blue membrane area. The input signal is routed into either the through or drop port, depending on the beating gap. (b) The modal distribution along the coupled slot waveguides, obtained by FDTD simulation. Overlaid in green is the sinusoidal profile of the intensity along the top slot waveguide. (c) The calculated beating length for two coupled nitride slot waveguides of 500nm width and 200nm gap in dependence of the beating gap. (d) The calculated beating length for a beating gap of 730nm in dependence of the slot gap.

Fig. 4
Fig. 4

(a) Process flow diagram illustrating the fabrication process. (b) Optical micrograph of a fabricated Mach-Zehnder interferometer device. One arm of the interferometer crosses the membrane area to realize a free-standing slot waveguide. An SEM zoom-in image of the slot waveguide is shown in the inset. (c) Optical micrograph of a directional coupler device, showing two sets of grating couplers and the directional coupler crossing the grey membrane area. An SEM zoom-in image of the two coupled slot waveguides is shown in the inset.

Fig. 5
Fig. 5

(a) The normalized transmission spectrum of a low-stress silicon nitride Mach-Zehnder interferometer device at various input laser power. Overlaid is the transmission band profile of the grating couplers, shown by the black dashed line. (b) The measured wavelength and phase shift in dependence of the laser power on the device. The linear fit to the data reveals a tuning sensitivity of 1.7nm/mW.

Fig. 6
Fig. 6

(a) Optical micrograph showing the tunable directional coupler device made of low-stress silicon nitride and the schematic showing the measurement setup. (b) Normalized transmission spectrum of the tunable directional coupler device. The blue and red lines are the measured transmission from the through and drop port, respectively. The transmission curve is enveloped by a Gaussian fit (dashed black line) of the transmission band profile of the grating couplers. (c) and (d) Static tuning of the through port and drop port transmission as a function of control laser power at two different probe laser wavelength.

Fig. 7
Fig. 7

(a) Normalized transmission spectrum of the tunable directional coupler device. The blue and red squares are the measured transmission data from the through and drop port, respectively. The solid blue and red lines show a sinusoidal fit of the transmission data. In the real device, the transmission curve is enveloped by the transmission band profile of the grating couplers, shown by the dashed black line. (b) The measurement setup used to characterize the performance of the directional coupler device. Time-domain traces are recorded on an oscilloscope, while the mechanical response in the frequency domain is obtained with a network analyzer. (c) The driven mechanical response of the directional coupler. Two resonance peaks corresponding to the in-plane motion of the slot waveguides are measured around 609kHz. (d) The measured modulated signal in the through and the drop port of the device.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L b = λ 2 ( n e n o )
P ( L ) = P 0 cos 2 ( π L 2 L b )
P ( λ ) = P 0 cos 2 ( π ( n e n o ) L λ )

Metrics