Abstract

We have performed multi-photon image reconstructions as well as polarization state analyses inside an artery wall affected by atherosclerosis to investigate the changes in collagen structure. Mice, either healthy or affected by spontaneous atherosclerosis, have been used for this purpose. A two-photon imaging system has been used to investigate atherosclerotic lesions in the ascending aorta of mice. Second harmonic imaging has been performed alternatively on healthy samples and on affected region. The reconstructed images show that the spatial distribution of the collagen network seems disorganized by the disease. The polarization state studies reveal however that the apparent disorganization of the collagen is related to its spatially diffuse distribution and that the internal structure of the collagen fibers is not affected by the disease. In addition, a theoretical simulation of the second harmonic polarization states shows that they are consistent with the known 3D structure of the collagen network.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roth and I. Freund, “Second-harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
    [CrossRef]
  2. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [CrossRef] [PubMed]
  3. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [CrossRef] [PubMed]
  4. M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
    [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  6. S. W. Chu, S. P. Tai, M. C. Chan, C. K. Sun, I. C. Hsiao, C. H. Lin, Y. C. Chen, and B. L. Lin, “Thickness dependence of optical second harmonic generation in collagen fibrils,” Opt. Express 15(19), 12005–12010 (2007).
    [CrossRef] [PubMed]
  7. S. Brasselet, D. Ait-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
    [CrossRef] [PubMed]
  8. I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express 18(18), 19339–19352 (2010).
    [CrossRef] [PubMed]
  9. P. J. Su, W. L. Chen, J. B. Hong, T. H. Li, R. J. Wu, C. K. Chou, S. J. Chen, C. Hu, S. J. Lin, and C. Y. Dong, “Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy,” Opt. Express 17(13), 11161–11171 (2009).
    [CrossRef] [PubMed]
  10. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
    [CrossRef] [PubMed]
  11. T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
    [CrossRef] [PubMed]
  12. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
    [CrossRef] [PubMed]
  13. H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
    [CrossRef] [PubMed]
  14. R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
    [CrossRef] [PubMed]
  15. P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [CrossRef]
  16. D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128(4), 1761–1775 (1962).
    [CrossRef]
  17. S. Roth and I. Freund, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” J. Appl. Cryst. 15(1), 72–78 (1982).
    [CrossRef]
  18. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
    [CrossRef] [PubMed]

2010 (3)

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

S. Brasselet, D. Ait-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
[CrossRef] [PubMed]

I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express 18(18), 19339–19352 (2010).
[CrossRef] [PubMed]

2009 (2)

P. J. Su, W. L. Chen, J. B. Hong, T. H. Li, R. J. Wu, C. K. Chou, S. J. Chen, C. Hu, S. J. Lin, and C. Y. Dong, “Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy,” Opt. Express 17(13), 11161–11171 (2009).
[CrossRef] [PubMed]

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

2005 (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

2002 (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

1982 (1)

S. Roth and I. Freund, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” J. Appl. Cryst. 15(1), 72–78 (1982).
[CrossRef]

1979 (1)

S. Roth and I. Freund, “Second-harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

1962 (1)

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128(4), 1761–1775 (1962).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Ait-Belkacem, D.

Barry, N. P.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Beaurepaire, E.

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Boulesteix, T.

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Brasselet, S.

Brustlein, S.

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Chan, M. C.

Chen, S. J.

Chen, W. L.

Chen, Y. C.

Cheng, J. X.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

Chou, C. K.

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Chu, S. W.

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Dong, C. Y.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

S. Roth and I. Freund, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” J. Appl. Cryst. 15(1), 72–78 (1982).
[CrossRef]

S. Roth and I. Freund, “Second-harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Gasecka, A.

Godeau, G.

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Gusachenko, I.

Hernest, M.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Hong, J. B.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Hsiao, I. C.

Hu, C.

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Kassab, G. S.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Kleinman, D. A.

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128(4), 1761–1775 (1962).
[CrossRef]

Kratzer, A.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Langohr, I. M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

Latour, G.

Le, T. T.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

Levi, M.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Li, T. H.

Lim, R. S.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Lin, B. L.

Lin, C. H.

Lin, S. J.

Locker, M. J.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

Lu, X.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Mantulin, W. W.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Martin, J. L.

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Miyazaki, M.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Miyazaki-Anzai, S.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Munhoz, F.

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Pages, N.

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Pena, A. M.

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Potma, E. O.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Roth, S.

S. Roth and I. Freund, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” J. Appl. Cryst. 15(1), 72–78 (1982).
[CrossRef]

S. Roth and I. Freund, “Second-harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Sauviat, M. P.

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Strupler, M.

Sturek, M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

Su, P. J.

Sun, C. K.

Tai, S. P.

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Tharaux, P. L.

Tromberg, B. J.

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Wang, H. W.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Weinreich, G. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Wu, R. J.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Zoumi, A.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Arterioscler. Thromb. Vasc. Biol. (1)

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009).
[CrossRef] [PubMed]

Biophys. J. (4)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Cytometry A (1)

T. Boulesteix, A. M. Pena, N. Pages, G. Godeau, M. P. Sauviat, E. Beaurepaire, and M. C. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry A 69(1), 20–26 (2006).
[CrossRef] [PubMed]

J. Appl. Cryst. (1)

S. Roth and I. Freund, “Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon,” J. Appl. Cryst. 15(1), 72–78 (1982).
[CrossRef]

J. Biomed. Opt. (1)

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

S. Roth and I. Freund, “Second-harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

J. Lipid Res. (1)

R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. (1)

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128(4), 1761–1775 (1962).
[CrossRef]

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. W. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup (left) and representative spectrum recorded at the spectrometer (right).

Fig. 2
Fig. 2

TPEF and SHG cross sectional images of healthy ascending aorta from C57BL/6 mouse. (a) All 2 photon autofluorescence collected, mainly arising from elastin elastic fiber (green). (b) SHG only, specific from collagen fibers (blue). (c) Merge: TPEF and SHG signals do not overlap. (P=60 mW, Obj. x60 oil, 1,1mm x 1,1mm, step 5µm, integration time 20ms).

Fig. 3
Fig. 3

Healthy C57BL:6 mouse: polarization dependence. (a) Enlarged composite image of Fig. 2. (c) ; notice the localization of collagen, adjacent to elastin in the media and prevalent in the adventice. (P=60 mW, Obj. x60 oil, 200µm x 200µm, integration time 20ms). (b) Polar diagram of the polarization state of the fluorescence. (c) Polarization state of the SHG signal (see text). (For (b) and (c) diagram from selected area in picture 25µm x 25µm, step 1µm, integration time 100 ms).

Fig. 4
Fig. 4

TPEF and SHG cross sectional images of atherosclerotic ascending aorta from ApoE−/− mouse. (a) All 2 photon autofluorescence collected (green). (b) SHG only (blue). (c) Merge: TPEF and SHG signals do not overlap; the atherosclerotic plaque clearly appears as a protrusion inside the lumen. (P=60 mW, Obj. x60 oil, integration time 20ms).

Fig. 5
Fig. 5

Atherosclerotic ApoE−/− mouse: polarization dependence. (a) Enlarged composite image of Fig. 4. (c) in the atherosclerotic plaque shoulder region. Notice disruptions of the internal elastic lamina and that collagen also localizes within the plaque matrix (white arrow). (P=60 mW, Obj. x60 oil, integration time 20ms). (b) Curve of the polarization state of SHG coming from the atherosclerotic plaque (zone 1). (c) Curve of the polarization state of SHG coming from the media underlying the plaque (zone 2). (For (b) and (c) diagram from selected area in picture 25µm x 25µm, integration time 100 ms).

Fig. 6
Fig. 6

Polarization states of the SHG signal precisely coming from collagen fibers of the aortic media in (a) healthy C57BL/6 and (b) atherosclerotic ApoE−/− mice. Healthy and atherosclerotic mice exhibit the same behavior. (For (a) and (b) diagram from selected area in picture P=30mW, 10µm x 10µm, integration time 100 ms).

Fig. 7
Fig. 7

Measured (blue squares) and calculated (red line) polar plots of polarization state of the SHG signal coming from collagen fibers of the aortic media (healthy) for polarization of the incident radiation along (a) the y-axis and (b) the x-axis.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p i ( 2 ) = j = 1 3 k = 1 3 β i j k E j E k .
P y ( 2 ) = ρ E y ( 2 ) + E x ( 2 ) ,
P x ( 2 ) = 2 E y E x ,
ρ = β y y y β y x x .
I x 2 ( α ) = ( sin ( 2 α ) ) 2 ,
I y ( 2 ) ( α ) = ( ρ cos ² ( α ) + sin ² ( α ) ) 2 .

Metrics