Abstract

We present a source of line-narrowed continuous-wave (CW) radiation at 193.4 nm with over 10 mW of output power for the first time, to our knowledge. The system configures four successive frequency conversions of outputs from three single-frequency fiber amplifiers at 1064, 1107, and 1963 nm. The 266-nm beam produced by frequency quadrupling of 1064-nm light is sum-frequency mixed with the 1963-nm light to generate 234.3-nm radiation, which is consequently mixed with the 1107-nm light to generate 193.4-nm radiation. Both mixings are achieved in temperature-tuned non-critically phase-matched (NCPM) crystals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hemmati, J. C. Bergquist, and W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8(2), 73–75 (1983).
    [CrossRef] [PubMed]
  2. K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
    [CrossRef]
  3. J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
    [CrossRef]
  4. H. Masuda, K. Kimura, N. Eguchi, and S. Kubota, “All-solid-sate, continuous-wave, 195 nm light generation in β-BaB2O4,” OSA Trends in Optics and photonics, vol. 50, Advanced Solid-State Lasers, C. Marshall, eds., (Optical Society of America, 2001), pp. 490−492.
  5. T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, “Efficient 193 nm generation by eighth harmonic of Er -doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Technical Digest Series (Optical Society of America, 2000), postdeadline paper CPD 9, pp. 17–18.
  6. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.
  7. H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
    [CrossRef]
  8. A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Optical Microlithography XX. Edited by Flagello, Donis G. Proc. SPIE, 6520, pp. 65202Z (2007).
  9. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36(18), 4159–4162 (1997).
    [CrossRef] [PubMed]
  10. K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
    [CrossRef]
  11. R. D. Mead, C. E. Hamilton, and D. D. Lowenthal, “Solid-state lasers for 193 nm lithography,” in Optical Microlithography X. G.E.Fuller, ed., Proc. SPIE 3051, 882–889 (1997).
  12. N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).
  13. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
    [CrossRef]
  14. T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
    [CrossRef] [PubMed]
  15. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  16. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
    [CrossRef]
  17. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [CrossRef]
  18. D. C. Gerstenberger, T. M. Trautmann, and M. S. Bowers, “Noncritically phase-matched second-harmonic generation in cesium lithium borate,” Opt. Lett. 28(14), 1242–1244 (2003).
    [CrossRef] [PubMed]
  19. J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), pp. 89–92.

2008 (2)

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[CrossRef] [PubMed]

2004 (1)

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

2003 (2)

D. C. Gerstenberger, T. M. Trautmann, and M. S. Bowers, “Noncritically phase-matched second-harmonic generation in cesium lithium borate,” Opt. Lett. 28(14), 1242–1244 (2003).
[CrossRef] [PubMed]

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

1999 (2)

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

1997 (1)

1994 (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

1983 (1)

1980 (2)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Asakawa, Y.

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

Bergquist, J. C.

Berkeland, D. J.

Bo, Y.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Bowers, M. S.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Chen, C. T.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Cruz, F. C.

Cui, D.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Deki, K.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Eguchi, N.

Falk, J.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

Finch, A.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Geng, A.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Gerstenberger, D. C.

Guha, S.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

Guo, L.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Hemmati, H.

Horiguchi, M.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Imai, Y.

Isyanova, Y.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Itano, W. M.

Kamimura, T.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Kato, K.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Kubota, S.

Li, R.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Manni, J. G.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Masuda, H.

Mori, Y.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Moulton, P. F.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Ohsako, Y.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Pati, B.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Saito, M.

Sakuma, J.

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Sasaki, T.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Sekita, H.

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

Smucz, J. S.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Südmeyer, T.

Sumiyoshi, T.

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

Trautmann, T. M.

Umemura, N.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Wall, K. F.

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

Wang, G. L.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Wang, X.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Xu, Z. Y.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Yokota, T.

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Yoshida, K.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Zhang, H.

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Zhang, G. L. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Y. Xu, R. Li, X. Wang, and C. T. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B 93(2-3), 323–320 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. F. Wall, J. S. Smucz, B. Pati, Y. Isyanova, P. F. Moulton, and J. G. Manni, “A Quasi-Continuous-Wave Deep Ultraviolet Laser Source,” IEEE J. Quantum Electron. 39(9), 1160–1169 (2003).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Sakuma, Y. Asakawa, T. Sumiyoshi, and H. Sekita, “High-power cw deep-UV coherent light sources around. 200 nm based on external resonant sum-frequency mixing,” IEEE J. Sel. Top. Quantum Electron. 10(6), 1244–1251 (2004).
[CrossRef]

J. Appl. Phys. (2)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

OSA Trends Opt. Photon. (1)

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” OSA Trends Opt. Photon. 26, 715–719 (1999).

Rev. Laser Eng. (1)

K. Deki, J. Sakuma, Y. Ohsako, A. Finch, T. Yokota, M. Horiguchi, Y. Mori, and T. Sasaki, “193 nm Generation by Optical Frequency Conversion Using CsLiB6O10 Crystal(CLBO),” Rev. Laser Eng. 27, 525–530 (1999).
[CrossRef]

Other (6)

R. D. Mead, C. E. Hamilton, and D. D. Lowenthal, “Solid-state lasers for 193 nm lithography,” in Optical Microlithography X. G.E.Fuller, ed., Proc. SPIE 3051, 882–889 (1997).

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Optical Microlithography XX. Edited by Flagello, Donis G. Proc. SPIE, 6520, pp. 65202Z (2007).

H. Masuda, K. Kimura, N. Eguchi, and S. Kubota, “All-solid-sate, continuous-wave, 195 nm light generation in β-BaB2O4,” OSA Trends in Optics and photonics, vol. 50, Advanced Solid-State Lasers, C. Marshall, eds., (Optical Society of America, 2001), pp. 490−492.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, “Efficient 193 nm generation by eighth harmonic of Er -doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Technical Digest Series (Optical Society of America, 2000), postdeadline paper CPD 9, pp. 17–18.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), pp. 89–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of CW 193.4-nm laser source.

Fig. 2
Fig. 2

Measured and calculated temperature of NCPM CLBO to generate 193.4-nm radiation by SFM as a function of IR input wavelength.

Fig. 3
Fig. 3

Measured and calculated temperature of NCPM LBO for SFM as a function of input wavelength while fixing the other wavelength at 266 nm.

Tables (2)

Tables Icon

Table 1 Wavelengths and Crystals for Generation of 193-nm Light by SFM

Tables Icon

Table 2 Temperatures for NCPM CLBO

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

  1 λ 1 + 1 λ 2 = 1 λ 3
n 1 λ 1 + n 2 λ 2 = n 3 λ 3
1 266 + 1 1987 = 1 234.6
1 266 + 1 1966 = 1 234.3

Metrics