Abstract

Liquid crystal (LC) lenses with a circularly hole-patterned electrode possess excellent characteristics in optical performance, especially for the capability of tunable focal lengths. But, non-uniformly symmetrical electric fields in LC lenses usually induce disclination lines when operating. In general, the occurrence of disclination lines not only degrades their optical capability such as imaging performance, but also spends more time for tuning focal lengths. In this paper, we use a way of polymer stabilization to successfully prevent the disclination lines in LC lenses. Even arbitrarily adjusting the applied voltages in LC lenses, it seems no occurrence of disclination lines again. In addition, we compare the basic optical performance for LC lenses with or without polymer stabilization. From experimental results, it shows that they almost have the same optical performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [CrossRef]
  2. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  3. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [CrossRef]
  4. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [CrossRef]
  5. S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
    [CrossRef]
  6. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
    [CrossRef]
  7. Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
    [CrossRef]
  8. F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
    [CrossRef]
  9. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  10. N. Fraval and J. L. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49(15), 2778–2783 (201l0).
    [CrossRef] [PubMed]
  11. M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
    [CrossRef]
  12. M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
    [CrossRef]
  13. C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
    [CrossRef]
  14. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
    [CrossRef]
  15. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]
  16. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [CrossRef] [PubMed]

2011 (1)

C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[CrossRef]

2010 (2)

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

2009 (1)

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[CrossRef]

2007 (2)

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[CrossRef]

2004 (2)

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

2003 (2)

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[CrossRef]

2002 (2)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

1997 (1)

1996 (1)

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

Bos, P. J.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[CrossRef] [PubMed]

Chien, L. C.

Davies, J. B.

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

Day, S. E.

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

de la Tocnaye, J. L.

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Fernández, F. A.

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

Fox, D. W.

Fraval, N.

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Hsu, C. J.

C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[CrossRef]

Huang, C. Y.

C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[CrossRef]

Jeong, J.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

Kim, J.-H.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

Kim, K. H.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Kim, S. M.

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Kim, Y. W.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

Lee, G. D.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Lee, S. H.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Li, J.

Lyu, J. J.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Masuda, S.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[CrossRef] [PubMed]

Pasquale, F. D.

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

Sato, S.

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[CrossRef] [PubMed]

Sergan, T. A.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[CrossRef]

Sergan, V. V.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[CrossRef]

Sheu, C. R.

C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[CrossRef]

Wang, B.

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Wu, B.

Wu, S. T.

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[CrossRef]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

Ye, M.

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Yu, C.-J.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Express (1)

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[CrossRef]

J. Soc. Inf. Disp. (1)

S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (3)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[CrossRef]

C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of cross-section of a conventional LC lens with a circularly hole-patterned electrode. It is a homogeneous LC cell.

Fig. 2
Fig. 2

Scheme of interaction between the electric field and LC directors in a LC lens. When applying voltages in the cell, a non-uniformly axially-symmetrical electric field is established. The LCs near surface of upper glass substrate will be reorientation with reverse directions (zoom in chart) so that the disclination line occurs.

Fig. 3
Fig. 3

The processes of polymer stabilization for a PSLC lens. (a) The completely injected cell contains the mixture of LCs, RM and photo initiator. (b) The cell with applied voltages of 140 Vrms is exposed with UV light (7 mW/cm2) for 4 minutes. The polymer structures are formed. (c) A PSLC lens is completed. When removing the applied voltage, the polymer structures sustain the LC directors near the glass surface, which are efficient to prevent disclination lines.

Fig. 4
Fig. 4

Experimental setup and observation of interference patterns in LC lenses without and with polymer stabilization, respectively. (a) Scheme of setup for optical measurement in LC lenses. (b) Observing variations of interference patterns in a LC lens without RM dopant and UV exposure with respect to variously applied voltages (Initially, the applied voltages were directly adjusted from 0 Vrms to 180 Vrms, and then reversely from 180 Vrms to 60 Vrms). The disclination line obviously occurred in the cell. (c) Observing variations of interference patterns in a LC lens with RM dopant and UV exposure with respect to variously applied voltages (With the same way in (b)). There was no occurrence of disclination line in the cell.

Fig. 5
Fig. 5

Comparisons of tunable focal lengths and interference patterns in LC lenses without/with polymer stabilization. (a) Comparisons of focal lengths versus applied voltages between two LC lenses without and with RM dopant/UV exposure. They are very consistent each other. (b) The global interference patterns and extraction in radial direction from center to edge of circular hole-pattern in the LC lens without RM dopant/UV exposure. (c) The global interference patterns and extraction in radial direction from center to edge of circular hole-pattern in the PSLC lens with RM dopant/UV exposure. From (b) and (c), it is obvious that two LC lenses have same rings in interference patterns, which means the same optical performance for them.

Fig. 6
Fig. 6

Chart of focused/unfocused intensity distribution and comparisons of tunable focal lengths in a PSLC lens by means of experimental measurement and rings in interference patterns, respectively. (a) Unfocused intensity distribution in a PSLC lens at 0 Vrms. (b) Focused intensity distribution in the same PSLC lens at 60 Vrms. (c) Comparisons of tunable focal lengths with respect to applied voltages from measurement and rings in interference patterns.

Fig. 7
Fig. 7

Observation of tunable focal lengths in a PSLC lens. (a) The setup for observing capabilities of tunable focal lengths in PSLC lenses. (b) The photo of target was taken by the CCD camera with the applied voltage of 0 Vrms in the lens. (c) The clearer photo of target was taken by the CCD camera with the applied voltage of 60 Vrms in the lens.

Fig. 8
Fig. 8

Interference patterns of a PSLC lens with 1.5 wt.% RM dopant after UV exposure with applied voltages of 44 Vrms. (a) Interference patterns exist in the cell without applied voltage. (b) A higher voltage of 360 Vrms is needed to tune focal length. The cell becomes cloudier when applying higher voltages.

Fig. 9
Fig. 9

Interference patterns of a PSLC lens with 1.3 wt.% RM dopant after UV exposure. (a) No interference pattern exists in the cell without applied voltage. (b) The disclination line occurs when directly applying a voltage of 50 Vrms. It is similar to the LC lenses without RM dopant.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f= r 2 2λN = π r 2 λ2 π N = π r 2 λ Δ δ .

Metrics