C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[Crossref]
V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]
[PubMed]
M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref]
[PubMed]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]
T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref]
[PubMed]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[Crossref]
C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref]
[PubMed]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]
[PubMed]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]
M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref]
[PubMed]
M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[Crossref]
M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
[Crossref]
[PubMed]
V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]
V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]
C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref]
[PubMed]
M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]
H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]
[PubMed]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]
M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref]
[PubMed]
M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[Crossref]
M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express 3(9), 094102, 094102–094103 (2010).
[Crossref]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]
H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]
S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910-1-261910-3 (2007).
[Crossref]
V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]
F. D. Pasquale, F. A. Fernández, S. E. Day, and J. B. Davies, “Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays,” IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996).
[Crossref]
S. H. Lee, S. M. Kim, and S. T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]
M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]
M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003).
[Crossref]
M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 433(1), 229–236 (2005).
[Crossref]
C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544(1), 185–191 (2011).
[Crossref]