Abstract

A novel all-optical label recognition method is proposed and demonstrated experimentally which is based on fiber Bragg gratings (FBGs)-based encoder/decoder and semiconductor optical amplifier (SOA). In this scheme, the optical label is firstly decoded properly, the decoded signal then generates the 1st and the 2nd order four-wave mixing (FWM) effect in different SOA, any of the frequencies achieved by the 2nd order FWM is extracted to recognize the optical label. The proposed solution can favor hardware simplicity over bandwidth efficiency in order to achieve the double two-dimensional optical orthogonal codes (2D-OOCs)-based optical label recognition in an optical packet switching (OPS) system where the bandwidth efficiency can be improved by FWM effect in SOA to achieve optical label processing and reasonable spacing of wavelengths for the payloads and optical label. The feasibility of the proposed method is validated by two experiments of the double 2D-OOCs-based optical label generation and recognition, the effect of the optical label on the payloads is also considered. These results show that the proposed method can (1) reduce effectively the code auto-correlation /cross-correlation requirements of the optical label identification and remove the cross-correlation pulses after optical decoding, (2) increase greatly the coding capacity and the number of the available optical labels, (3) improve the reliability and bandwidth efficiency of the optical label identification. The experimental results also show that the optical label has a high extinction ratio and can be operated easily.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
    [CrossRef]
  2. D. Klonidis, T. Politi, R. Nejabati, M. O’Mahony, and D. Simeonidou, “Design and demonstration of an asynchronous high speed optical packet switch,” J. Lightwave Technol. 23(10), 2914–2925 (2005).
    [CrossRef]
  3. N. Calabretta and H. Dorren, “All-optical label processing in optical paket switched networks,” OFC/NFOEC, OThN6 (2010).
  4. L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
    [CrossRef]
  5. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [CrossRef]
  6. B. Hoanca, S. Dubovitsky, X. Zhu, A. A. Sawchuk, W. H. Steier, and P. D. Dapkus, “All-optical routing using wavelength recognizing switches,” J. Lightwave Technol. 16(12), 2243–2254 (1998).
    [CrossRef]
  7. U. Black, MPLS and Label Switching Networks (Prentice-Hall, 2002).
  8. P. Seddighian and A. Simon, “Optical packet switching networks with binary multiwavelength labels,” J. Lightwave Technol. 27(13), 2246–2256 (2009).
    [CrossRef]
  9. R. Geldenhuys, Y. Liu, N. Calabretta, M. T. Hill, F. M. Huijskens, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching [Invited],” J. Opt. Netw. 3(12), 854–865 (2004).
    [CrossRef]
  10. D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
    [CrossRef]
  11. D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
    [CrossRef]
  12. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical paket switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21(1), 2–12 (2003).
    [CrossRef]
  13. T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
    [CrossRef]
  14. K. Sawada and H. Uenohara, “High-speed optical label recognition technique using an optical digital-to-analog conversion and its application to optical label switch,” J. Lightwave Technol. 28(13), 1889–1896 (2010).
    [CrossRef]
  15. J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
    [CrossRef]
  16. Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
    [CrossRef]
  17. M. Xin, Mi. Chen, and H. Chen, “Optical code label stripping based on SOA-MZI in optical packet switching networks,” J. Lightwave Technol. 27(15), 3212–3219 (2009).
    [CrossRef]
  18. M. Xin, M. Chen and H. Chen. “A novel multi-bit optical code label processing scheme in optical packet switching networks”, OFC/NFOEC, OW12(2010).
  19. N.Calabretta, G.Contestabile and E.Ciaramell, “All-optical label erasure/recognition of novel DPSK optical packets for optical packet switching”, OFC/NFOEC, OTuC5(2005).
  20. C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
    [CrossRef]
  21. C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
    [CrossRef]

2010 (2)

K. Sawada and H. Uenohara, “High-speed optical label recognition technique using an optical digital-to-analog conversion and its application to optical label switch,” J. Lightwave Technol. 28(13), 1889–1896 (2010).
[CrossRef]

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

2009 (2)

2008 (3)

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
[CrossRef]

2006 (2)

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2001 (2)

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

1998 (1)

1995 (1)

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

1994 (1)

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

Apostolopoulos, D.

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

Avramopoulos, H.

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

Ayotte, S.

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

Calabretta, N.

Chen, H.

Chen, Mi.

Cotter, D.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

Dapkus, P. D.

de Waardt, H.

Dorren, H. J. S.

Dubovitsky, S.

Geldenhuys, R.

Gunning, P.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

Hill, M. T.

Hoanca, B.

Huijskens, F. M.

Hunter, D. K.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

Kehayas, E.

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

Khoe, G. D.

Klonidis, D.

LaRochelle, S.

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

Ling, Y.

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

Liu, Y.

Lucek, J. K.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

M’Sallem, Y. B.

Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
[CrossRef]

Nejabati, R.

Nesset, D.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

O’Mahony, M.

O’Mahony, M. J.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

Okamoto, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Politi, T.

Qiu, K.

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

Rogers, D. C.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

Rosas-Fernández, J. B.

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

Rusch, L. A.

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
[CrossRef]

Saida, T.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Sawada, K.

Sawchuk, A. A.

Seddighian, P.

P. Seddighian and A. Simon, “Optical packet switching networks with binary multiwavelength labels,” J. Lightwave Technol. 27(13), 2246–2256 (2009).
[CrossRef]

Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
[CrossRef]

Shabeer, M.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

Shibata, T.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Simeonidou, D.

D. Klonidis, T. Politi, R. Nejabati, M. O’Mahony, and D. Simeonidou, “Design and demonstration of an asynchronous high speed optical packet switch,” J. Lightwave Technol. 23(10), 2914–2925 (2005).
[CrossRef]

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

Simon, A.

Smith, K.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

Srivatsa, A.

Stampoulidis, L.

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

Steier, W. H.

Sugita, A.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Takiguchi, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Tatham, M. C.

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

Tzanakaki, A.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

Uchiyama, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

Uenohara, H.

Vyrsokinos, K.

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

Westbrook, L. D.

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

Xin, M.

Xu, B.

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

Yoo, S. J. B.

Zhang, C.

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

Zhou, H.

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

Zhu, X.

Electron. Lett. (3)

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6-bit keyword address recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[CrossRef]

D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, “Degenerate wavelength operation of an ultrafast all-optical AND gate using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett. 30(23), 1938–1939 (1994).
[CrossRef]

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett. 37(20), 1237–1238 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. 39(3), 128–135 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. B. Rosas-Fernández, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE J. Sel. Top. Quantum Electron. 14(3), 868–878 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. B. M’Sallem, P. Seddighian, and L. A. Rusch, “Optical packet switching via FWM processing of time-stacked weight-2 codes,” IEEE Photon. Technol. Lett. 20(20), 1712–1714 (2008).
[CrossRef]

L. Stampoulidis, E. Kehayas, K. Vyrsokinos, D. Apostolopoulos, and H. Avramopoulos, “Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers,” IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006).
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Netw. (1)

Opt. Commun. (2)

C. Zhang, K. Qiu, H. Zhou, Y. Ling, and B. Xu, “Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching,” Opt. Commun. 283(6), 932–938 (2010).
[CrossRef]

C. Zhang, K. Qiu, B. Xu, and Y. Ling, “A novel all-optical processing based on multiple optical orthogonal codes sequences for optical packet switching networks,” Opt. Commun. 281(9), 2433–2442 (2008).
[CrossRef]

Other (4)

N. Calabretta and H. Dorren, “All-optical label processing in optical paket switched networks,” OFC/NFOEC, OThN6 (2010).

U. Black, MPLS and Label Switching Networks (Prentice-Hall, 2002).

M. Xin, M. Chen and H. Chen. “A novel multi-bit optical code label processing scheme in optical packet switching networks”, OFC/NFOEC, OW12(2010).

N.Calabretta, G.Contestabile and E.Ciaramell, “All-optical label erasure/recognition of novel DPSK optical packets for optical packet switching”, OFC/NFOEC, OTuC5(2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the double 2D-OOCs-based optical label generation. PC: polarization controller, Mod: modulator.

Fig. 2
Fig. 2

Principle of the proposed double 2D-OOCs-based optical label recognition in (a), the output of the optical label with matching decoding in (b), and without matching decoding in (c). SOA: semiconductor optical amplifier, FBGs: fiber Bragg gratings, EDFA: erbium doped fiber amplifier.

Fig. 3
Fig. 3

Experimental setup of the double 2D-OOCs-based optical label generation. FPGA: field programmable gate array.

Fig. 4
Fig. 4

Optical pulse waveforms, (a) the output of the pulse from an FPGA, (b) the output of the modulated pulse signal.

Fig. 5
Fig. 5

Optical waveforms of an optical packet consisted of the double 2D-OOCs-based optical label and the payloads.

Fig. 6
Fig. 6

Experimental setup of the proposed optical label recognition. PPG: pulse pattern generator, DeMUX: de-multiplexer.

Fig. 7
Fig. 7

Optical pulse waveforms, (a) the autocorrelation peak waveform of C11 [7,10,17], (b) the autocorrelation peak waveform of C12 [5,11,13].

Fig. 8
Fig. 8

The waveforms, (a) the single pulse with 0.5 ns, and (b) the autocorrelation peak with 2 ns.

Fig. 9
Fig. 9

The spectra of the autocorrelation peak.

Fig. 10
Fig. 10

The spectra of the 1st-order FWM in a SOA.

Fig. 11
Fig. 11

The spectra of the 2nd-order FWM in another SOA.

Fig. 12
Fig. 12

The waveforms, (a) the waveform of the new wavelength λ5 with 2 ns for 1 # part of Fig. 6, (b) the waveform of the new wavelength λ7 with 2 ns for 1 # part of Fig. 6, (c) the waveform of the new wavelength λ5 with 0.5 ns for 2 # part of Fig. 6, (d) the waveform of the new wavelength λ7 with 0.5 ns for 2 # part of Fig. 6.

Fig. 13
Fig. 13

The waveforms, (a) the new wavelength λ9 with 2 ns for 1 # of Fig. 6, (b) with 0.5 ns for 2 # of Fig. 6.

Fig. 14
Fig. 14

BER versus the received power of the payloads with the double 2D-OOCs-based optical label for an OPS system with 2.5 Gbit/s and 5.0 Gbit/s for different cases in (a), eye diagrams for any two cases in (b) and (c).

Metrics