Abstract

The optical absorption at wavelengths near 1550 nm has been quantified as a function of annealing temperature in ion-implanted silicon-on-insulator racetrack resonators. The variation of the output characteristics of the bus waveguide versus the concentration of implantation-induced lattice disorder in the ring is used to develop a novel method for the determination of the coupling and round-trip loss of the resonator, independently. This experimental procedure has general applicability for the determination of these parameters. Significant propagation loss is found to persist following annealing at temperatures previously observed to remove the majority of ion implantation damage. It is suggested that these annealing characteristics are a consequence of an ion implantation range which is greater than the silicon waveguide layer thickness.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Knights, A. House, R. MacNaughton, and F. Hopper, “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,”in Proc. Optical Fiber Communications Conference, Atlanta, GA, 23–38 March 2003 (OFC2003), p. 705.
  2. J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [CrossRef]
  3. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008).
    [CrossRef] [PubMed]
  4. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
    [CrossRef]
  5. H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959).
    [CrossRef]
  6. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
    [CrossRef]
  7. H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
    [CrossRef]
  8. S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
    [CrossRef]
  9. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
    [CrossRef]
  10. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
    [CrossRef] [PubMed]
  11. http://www.epixfab.eu
  12. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, (1985).
  13. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  14. P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
    [CrossRef]
  15. A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
    [CrossRef]

2010 (2)

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

2009 (1)

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

2008 (1)

2006 (1)

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

2005 (1)

J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

2002 (2)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
[CrossRef]

1997 (1)

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

1969 (1)

H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
[CrossRef]

1966 (1)

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

1959 (1)

H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959).
[CrossRef]

Asghari, M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Benton, J. L.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Borders, J. A.

H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
[CrossRef]

Bradley, J. B.

J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Burrows, C. P.

P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
[CrossRef]

Cheng, L. J.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

Coffa, S.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Coleman, P. G.

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
[CrossRef]

Corbett, J. W.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

Corelli, J. C.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

Deane, J. H. B.

Doylend, J. K.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Eaglesham, D. J.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Fan, H. Y.

H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959).
[CrossRef]

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Fuochi, P. G.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Gardes, F. Y.

Gwilliam, R.

Gwilliam, R. M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

Headley, W. R.

Jacobson, D. C.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Jessop, P. E.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Kallis, A.

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

Knights, A. P.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
[CrossRef]

Kringho?j, P.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Lavalle, M.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Libertino, S.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Litvinenko, K. L.

Luff, B. J.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Mashanovich, G. Z.

Poate, J. M.

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

Ramdas, A. K.

H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959).
[CrossRef]

Reed, G. T.

Shafiiha, R.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Smith, A. J.

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008).
[CrossRef] [PubMed]

Stein, H. J.

H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
[CrossRef]

Stolojan, V.

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

Thomson, D. J.

Vook, F. L.

H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
[CrossRef]

Watkins, G. D.

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

Wright, N. M.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Yeong, S. H.

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14(10), 328 (1969).
[CrossRef]

S. Libertino, J. L. Benton, D. C. Jacobson, D. J. Eaglesham, J. M. Poate, S. Coffa, P. Kringho̸j, P. G. Fuochi, and M. Lavalle, “Evolution of interstitial- and vacancy-type defects upon thermal annealing in ion-implanted Si,” Appl. Phys. Lett. 71(3), 389 (1997).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, “Simple expression for vacancy concentrations at half ion range following MeV ion implantation of silicon,” Appl. Phys. Lett. 80(6), 947 (2002).
[CrossRef]

J. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Electron. Lett. (1)

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

J. Appl. Phys. (3)

H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127 (1959).
[CrossRef]

A. J. Smith, R. M. Gwilliam, V. Stolojan, A. P. Knights, P. G. Coleman, A. Kallis, and S. H. Yeong, “Enhancement of phosphorus activation in vacancy engineered thin silicon-on-insulator substrates,” J. Appl. Phys. 106(10), 103514 (2009).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9μm bands in irradiated silicon:correlations with the divacancy,” Phys. Rev. 152(2), 761–774 (1966).
[CrossRef]

Other (3)

A. Knights, A. House, R. MacNaughton, and F. Hopper, “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,”in Proc. Optical Fiber Communications Conference, Atlanta, GA, 23–38 March 2003 (OFC2003), p. 705.

http://www.epixfab.eu

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the rib waveguide cross-section showing dimensions and optical indices. The cross-hatched area indicates the ion implanted region extending through the silicon device layer and into the buried oxide.

Fig. 2
Fig. 2

Ring resonator device used in this work. GCI = grating coupled input; GCO = grating coupled output. K is the coupling between the bus waveguide and the ring. The defects were implanted through a 60 μm long mask window such that the coupling K was unaffected by the implantation.

Fig. 3
Fig. 3

Resonances measured near 1550 nm for implanted ring resonators subjected to isochronal 10 minute anneals. Lines indicate fits of Eq. (1) to the measured data.

Fig. 4
Fig. 4

Calculated attenuation vs. annealing temperature for this work and for Foster’s results scaled using the CBK equation14 to adjust for disparate energy and dose.

Tables (1)

Tables Icon

Table 1 Solution Sets Derived from Fitting Eq. (1) to the Data Shown in Fig. 3, Along with Corresponding Round-Trip Loss (RTL) in dB*

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P o u t = T + R 2 R T cos ( 2 π L n / λ ) 1 + R T 2 R T cos ( 2 π L n / λ )
P o u t ( r e s o n a n c e ) = T + R 2 R T 1 + R T 2 R T = ( R T ) 2 ( 1 R T ) 2 .

Metrics