Abstract

We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W. By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 mW/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).
  3. J. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
    [CrossRef]
  4. N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
  5. P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996).
    [CrossRef]
  6. A. Avdokhin, S. Popov, and J. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
    [CrossRef] [PubMed]
  7. J. Travers, R. Kennedy, S. Popov, J. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005).
    [CrossRef] [PubMed]
  8. B. Cumberland, J. Travers, S. Popov, and J. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008).
    [CrossRef] [PubMed]
  9. J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
    [CrossRef] [PubMed]
  10. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009).
    [CrossRef]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
    [CrossRef] [PubMed]
  12. M. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef] [PubMed]
  13. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, “Enhanced soliton self-frequency shift and cw supercontinuum generation in geo2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011).
    [CrossRef]
  14. S. Sørensen, A. Judge, C. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuumgroup-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
    [CrossRef] [PubMed]
  15. A. Judge, O. Bang, B. Eggleton, B. Kuhlmey, E. Mägi, R. Pant, and C. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  16. A. Judge, O. Bang, and C. Martijn de Sterke, “Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010).
    [CrossRef]
  17. T. Nikolajsen and P. Skovgaard, “Pulsed fiber laser,” (2011). WO Patent WO/2011/023,201.
  18. D. Carlson, “Dynamics of a repetitively pump-pulsed Nd: YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968).
    [CrossRef]
  19. L. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett. 14, 671 (1989).
    [CrossRef] [PubMed]
  20. R. Petkovšek, V. Agrež, and F. Bammer, “Gain-switching of a fiber laser: experiment and a simple theoretical model,” in “Proc. SPIE ,”(2010), p. 77210L.
    [CrossRef]
  21. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
    [CrossRef] [PubMed]
  22. M. Giesberts, J. Geiger, M. Traub, and H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. SPIE ,” (2009), p. 71952P.
    [CrossRef]
  23. C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
    [CrossRef]
  24. J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
    [CrossRef]
  25. M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC, 2001).
    [CrossRef]
  26. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
    [CrossRef]
  27. E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).
  28. K. Hansen, C. Olausson, J. Broeng, K. Mattsson, M. Nielsen, T. Nikolajsen, P. Skovgaard, M. Sørensen, M. Denninger, and C. Jakobsen, “Airclad fiber laser technology,” in “Proc. SPIE ,”, (2008), p. 687307.
    [CrossRef]
  29. K. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17, 17855–17861 (2009).
    [CrossRef] [PubMed]
  30. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
    [CrossRef]
  31. J. Stone and J. Knight, “Visibly white light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  32. A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [CrossRef]
  33. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]

2011

2010

2009

2008

2007

M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
[CrossRef] [PubMed]

A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

2006

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).

M. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef] [PubMed]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005

2003

2001

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

1996

P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996).
[CrossRef]

1989

1987

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

1968

D. Carlson, “Dynamics of a repetitively pump-pulsed Nd: YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968).
[CrossRef]

Alfano, R.

R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

Alvarez-Chavez, J.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Avdokhin, A.

Bang, O.

Barviau, B.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Bigot, L.

Bjarklev, A.

Bouwmans, G.

Buchter, S.

E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).

Carlson, D.

D. Carlson, “Dynamics of a repetitively pump-pulsed Nd: YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968).
[CrossRef]

Chamorovskii, Y.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

Chernikov, S.

P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996).
[CrossRef]

Clarkson, W.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cumberland, B.

de Sterke, C.

Digonnet, M.

M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC, 2001).
[CrossRef]

Douay, M.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dupriez, P.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Eggleton, B.

Filippov, V.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

Frosz, M.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Golant, K.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

Gorbach, A.

A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Grudinin, A.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Hakimi, F.

Hickey, L. M. B.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Jiang, M.

Judge, A.

Kaivola, M.

E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).

Kennedy, R.

Kerttula, J.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

Kirchhof, J.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Knight, J.

Kudlinski, A.

Kuhlmey, B.

Le Rouge, A.

Mägi, E.

Malinowski, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Mangan, B.

Martijn de Sterke, C.

Mattsson, K.

Mélin, G.

Mussot, A.

Nilsson, C.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Nilsson, J.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Offerhaus, H.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Okhotnikov, O.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

Pant, R.

Persephonis, P.

P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996).
[CrossRef]

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Po, H.

Popov, S.

Quiquempois, Y.

Räikkönen, E.

E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).

Reichel, V.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Renaud, C.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Richardson, D.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Richardson, D. J.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Rulkov, A.

Sabert, H.

Sahu, J. K.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Savage, N.

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Skryabin, D.

A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Snitzer, E.

Sørensen, S.

Stone, J.

Taki, M.

Tayebati, P.

Taylor, J.

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Thomsen, C.

Travers, J.

Tumminelli, R.

Turner, P.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

Unger, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Vanvincq, O.

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Zenteno, L.

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Electron. Lett.

P. Persephonis, S. Chernikov, and J. Taylor, “Cascaded cw fibre raman laser source 1.6–1.9μm,” Electron. Lett. 32, 1486–1487 (1996).
[CrossRef]

IEEE J. Quantum Electron.

C. Renaud, H. Offerhaus, J. Alvarez-Chavez, C. Nilsson, W. Clarkson, P. Turner, D. Richardson, and A. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Kerttula, V. Filippov, Y. Chamorovskii, K. Golant, and O. Okhotnikov, “250-mu J broadband supercontinuum generated using a q-switched tapered fiber laser,” IEEE Photon. Technol. Lett. 23, 380–382 (2011).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

J. Appl. Phys.

D. Carlson, “Dynamics of a repetitively pump-pulsed Nd: YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub.

E. Räikkönen, M. Kaivola, and S. Buchter, “Compact supercontinuum source for the visible using gain-switched Ti:Sapphire laser as pump,” J. Eur. Opt. Soc. Rapid Pub. 1, (2006).

J. Lightwave Technol.

J. Non-Cryst. Solids

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

J. Opt.

J. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).

A. Gorbach and D. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

T. Nikolajsen and P. Skovgaard, “Pulsed fiber laser,” (2011). WO Patent WO/2011/023,201.

M. Giesberts, J. Geiger, M. Traub, and H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. SPIE ,” (2009), p. 71952P.
[CrossRef]

R. Petkovšek, V. Agrež, and F. Bammer, “Gain-switching of a fiber laser: experiment and a simple theoretical model,” in “Proc. SPIE ,”(2010), p. 77210L.
[CrossRef]

K. Hansen, C. Olausson, J. Broeng, K. Mattsson, M. Nielsen, T. Nikolajsen, P. Skovgaard, M. Sørensen, M. Denninger, and C. Jakobsen, “Airclad fiber laser technology,” in “Proc. SPIE ,”, (2008), p. 687307.
[CrossRef]

M. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup for characterization of the fiber laser and the generated supercontinuum. The setup is for clarity split in four levels: (1) electronics, (2) fiber laser, (3) laser analysis and 4) supercontinuum analysis. The electronics consist of a pulse generator, a fast pump diode driver, and a pump diode array. The fiber-coupled pump diodes are combined into the Yb-doped airclad fiber laser. The high reflector (HR) grating and the output coupler (OC) grating construct the master oscillator (MO) and the rest of the fiber is a power amplifier (PA). A single-mode fiber (SMF) delivers either to the laser pulse analysis setup or it is spliced to an intermediate fiber (IMF), which is again spliced to the nonlinear fiber (PCF). The laser analysis uses a beam sampler (BS), a fast photodiode connected to an oscilloscope, and a power meter. The supercontinuum is measured through an integrating sphere (IS) by a fiber-coupled optical spectrum analyzer.

Fig. 2
Fig. 2

Transient behavior of the fiber laser. In (a) and (b) oscilloscope traces of the electronic on/off modulation and fiber laser output are shown. (a) shows the relaxation oscillation regime (ton τδ ). (b) shows the gain-switching regime for which ton are selected by fulfilling ton τδ . In (c) the transient behavior is illustrated and the characteristic parameters are defined, such as the spike delay time τδ , oscillation period τω , pump power Ppump , first spike peak power Ppeak , full width half maximum width τFWHM , CW power level PCW , pump pulse width ton , off-time toff , and repetition rate f.

Fig. 3
Fig. 3

Peak power determination of the pulse by a Gaussian fit. The pulse is obtained with the parameters to the upper right. The peak power is estimated to be 730 W and the duration is 213 ns. The spikes at the peak are longitudinal mode beatings.

Fig. 4
Fig. 4

The gain-switching power characteristics of the fiber laser at maximum pump power of 105 W. The peak power (Ppeak ) and width (τFWHM ) of pulses are shown. The optimum regime regarding peak power is in-between the slow; toff τY b and the fast; toff τrt regimes. The off-time toff and the pump width ton , which is set equal to the spike delay (τδ = ton ), are shown in the lower part.

Fig. 5
Fig. 5

Supercontinuum generation in the 100 m long nonlinear PCF (SC-5.0-1040) pumped by the fiber laser in CW operation and in the optimum gain-switching operation with 600 W coupled peak power in 200 ns pulses. The coupled average power of both inputs is 25 W and the output powers are 17 W and 12 W for CW and gain-switched pumping, respectively.

Metrics