Abstract

We describe the properties of guided modes in metallic parallel plate structures with subwavelength corrugation on the surfaces of both conductors, which we refer to as spoof-insulator-spoof (SIS) waveguides, in close analogy to metal-insulator-metal (MIM) waveguides in plasmonics. A dispersion relation for SIS waveguides is derived, and the modes are shown to arise from the coupling of conventional waveguide modes with the localized modes of the grooves in the SIS structure. SIS waveguides have numerous design parameters and can be engineered to guide modes with very low group velocities and adiabatically convert light between conventional photonic modes and plasmonic ones.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007)
  4. J. Zenneck, “Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846– (1907).
    [CrossRef]
  5. A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 333(4), 665–736 (1909).
    [CrossRef]
  6. M. Osawa, “Surface-enhanced infrared absorption,” in Topics in Applied Physics (Springer, 2001) vol. 81.
  7. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [CrossRef] [PubMed]
  8. K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
    [CrossRef]
  9. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
    [CrossRef] [PubMed]
  10. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [CrossRef] [PubMed]
  11. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119 (1950).
    [CrossRef]
  12. W. Rotman, “A study of single-surface corrugated guides,” Proc. of the IRE 39, 8 (1951).
  13. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
    [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [CrossRef] [PubMed]
  16. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  17. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
    [CrossRef]
  18. K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009).
    [CrossRef]
  19. B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
    [CrossRef] [PubMed]
  20. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
    [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
    [CrossRef]
  22. K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988).
    [CrossRef]
  23. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442 (2004).
    [CrossRef]
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)
  26. U. S. Inan and A. S. Inan, Electromagnetic Waves (Prentice Hall, 2000)
  27. P. Yeh, Optical Waves in Layered Media (Wiley, 2005)
  28. For example, the COMSOL Multiphysics RF module allows for PMC boundary conditions for electromagnetic simulations, in addition to the more common PEC, perfectly matched layer (PML), etc.
  29. Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).
  30. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
    [CrossRef]
  31. C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microw. Antennas Propag. 1(1), 255–260 (2007).
    [CrossRef]
  32. F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).
  33. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982)
  34. H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).
  35. M. Cardona, “Fresnel Reflection and Surface Plasmons,” Am. J. Phys. 39(10), 1277 (1971).
    [CrossRef]
  36. The RF Module of COMSOL Multiphysics 4 was used to perform finite element calculations.
  37. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
    [CrossRef] [PubMed]
  38. X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
    [CrossRef]
  39. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17(22), 19996–20011 (2009).
    [CrossRef] [PubMed]
  40. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  41. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).
  42. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [CrossRef] [PubMed]
  43. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [CrossRef] [PubMed]
  44. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
    [CrossRef] [PubMed]
  45. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
    [CrossRef] [PubMed]
  46. M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [CrossRef] [PubMed]

2010 (4)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

2009 (7)

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17(22), 19996–20011 (2009).
[CrossRef] [PubMed]

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009).
[CrossRef]

2008 (6)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
[CrossRef] [PubMed]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

2007 (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microw. Antennas Propag. 1(1), 255–260 (2007).
[CrossRef]

2006 (3)

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

2005 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

2004 (3)

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

1988 (1)

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988).
[CrossRef]

1971 (1)

M. Cardona, “Fresnel Reflection and Surface Plasmons,” Am. J. Phys. 39(10), 1277 (1971).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

1964 (1)

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).

1953 (1)

H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119 (1950).
[CrossRef]

1909 (1)

A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 333(4), 665–736 (1909).
[CrossRef]

1907 (1)

J. Zenneck, “Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846– (1907).
[CrossRef]

Agrafiotis, S.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Avitzour, Y.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Bai, W.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Barlow, H. M.

H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Beruete, M.

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Brener, I.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microw. Antennas Propag. 1(1), 255–260 (2007).
[CrossRef]

Brongersma, M. L.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442 (2004).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Cai, L.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17(22), 19996–20011 (2009).
[CrossRef] [PubMed]

Cardona, M.

M. Cardona, “Fresnel Reflection and Surface Plasmons,” Am. J. Phys. 39(10), 1277 (1971).
[CrossRef]

Catrysse, P. B.

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Cullen, A. L.

H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Deibel, J. A.

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Durach, M.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Escarra, M. D.

Falcone, F.

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Fan, S.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

Fernandez-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Ferro, G.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Fischer, C.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Garcia-Vidal, J. F.

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Gin, A.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Gires, F.

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).

Goodhue, W.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119 (1950).
[CrossRef]

He, S.

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

Huang, D. H.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Jin, Y.

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Kern, D. J.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

Khanikaev, A. B.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Korobkin, D.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Krishna, S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Langston, W.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Lanuzza, L.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Lin, S. Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

Loncar, M.

Lu, X. F.

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

Maier, S. A.

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mazumder, P.

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009).
[CrossRef]

Miao, X. Y.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Mittleman, D. M.

Monorchio, A.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

Moreno, E.

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Mousavi, S. H.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Navarro-Cia, M.

Nelson, K. A.

Neuner, B.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Passmore, B.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Rusina, A.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988).
[CrossRef]

Selker, M. D.

Shaner, E.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Shin, H.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

Shvets, G.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 333(4), 665–736 (1909).
[CrossRef]

Song, A. M.

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

Song, G.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Song, K.

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009).
[CrossRef]

Sorolla, M.

Stockman, M. I.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tournois, P.

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Vangala, S.

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

von Hagen, J.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

Wang, B.

Wang, G.

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

Wang, K. L.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Welford, K. R.

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988).
[CrossRef]

Werner, D. H.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

Wiesbeck, W.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

Wilhelm, M. J.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Woolf, D.

Xu, K. Y.

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

Xu, Y.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

Younis, M.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Zenneck, J.

J. Zenneck, “Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846– (1907).
[CrossRef]

Zhang, J.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

Zia, R.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442 (2004).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

Am. J. Phys. (1)

M. Cardona, “Fresnel Reflection and Surface Plasmons,” Am. J. Phys. 39(10), 1277 (1971).
[CrossRef]

Ann. Phys. (2)

J. Zenneck, “Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328(10), 846– (1907).
[CrossRef]

A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 333(4), 665–736 (1909).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Y. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 22 (2004).

C. R. Acad. Sci. Paris (1)

F. Gires and P. Tournois, “Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence,” C. R. Acad. Sci. Paris 258, 6112 (1964).

IEEE Trans. Antenn. Propag. (2)

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antenn. Propag. 31, 10 (2003).

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8 (2005).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56(11), 2792 (2009).
[CrossRef]

IET Microw. Antennas Propag. (1)

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microw. Antennas Propag. 1(1), 255–260 (2007).
[CrossRef]

J. Appl. Phys. (3)

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119 (1950).
[CrossRef]

K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” J. Appl. Phys. 103(11), 113708 (2008).
[CrossRef]

J. Mod. Opt. (1)

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35(9), 1467 (1988).
[CrossRef]

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plastomic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (3)

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Proc. of the Institution. of Electrical. Engineers. London. (1)

H. M. Barlow and A. L. Cullen, “Surface waves,” Proc. of the Institution. of Electrical. Engineers. London. 100, 68 (1953).

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (10)

W. Rotman, “A study of single-surface corrugated guides,” Proc. of the IRE 39, 8 (1951).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007)

M. Osawa, “Surface-enhanced infrared absorption,” in Topics in Applied Physics (Springer, 2001) vol. 81.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982)

The RF Module of COMSOL Multiphysics 4 was used to perform finite element calculations.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)

U. S. Inan and A. S. Inan, Electromagnetic Waves (Prentice Hall, 2000)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005)

For example, the COMSOL Multiphysics RF module allows for PMC boundary conditions for electromagnetic simulations, in addition to the more common PEC, perfectly matched layer (PML), etc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a.) Conventional parallel plate waveguide with the mode self-consistency condition illustrated (adapted from [24]). (b.) Periodically corrugated PEC surface with the unit cell identified by vertical dashed lines. If the corrugation is substantially subwavelength ( λ > > d ) , this structure can support bound TM surface modes dubbed spoof surface plasmons (SSPs). (c.) Spoof-insulator-spoof (SIS) waveguide comprising two counter-facing structures from Fig. 1(b) separated by an air gap of height g. The numbers on the right identify the layers used in the transfer matrix calculations.

Fig. 2
Fig. 2

(a.) Illustrated first and second order resonances of a groove cavity, with an electric field node at the bottom and an antinode at the opening. (b.) Reflection phase ϕ vs. incidence angle θ from a corrugated interface around the fundamental resonant frequency f 1 of the metallic grooves.

Fig. 3
Fig. 3

(a.) Dispersion diagram of the parallel plate waveguide in Fig. 1(a) (red and blue lines) with g = 50μm, and of the single corrugated structure in Fig. 1(b) (solid black lines) with a = 1μm, d = 10μm, and h = 50μm. The red line is the dispersion of the fundamental TEM mode of the parallel plate waveguide, which is symmetric, while the blue line represents the antisymmetric TM1 mode. The horizontal dashed black lines indicate the first and second resonance frequencies of the grooves (Fig. 2(a)), the former being the lowest asymptotic spoof plasmon frequency. (b.) Dispersion diagram of the SIS structure in Fig. 1(c) as calculated by Eq. (7i) (blue lines) and Eq. (7ii) (red lines), and finite element eigenfrequency analysis (circles). The geometrical parameters are the same as in (a). Points calculated by using by the self consistency condition of Eq. (1) using the reflection phase ϕ given by Eq. (4) overlap exactly with those obtained by Eqs. (3i) and (3ii), so they are not plotted. The dispersion curves of the unpatterned parallel plate waveguide (Fig. 1(a)) as well as the local cavity resonance frequencies (Fig. 2(a)) are indicated by dashed lines. Anticrossings occur when the parallel plate waveguide dispersion curves intersect the localized cavity resonance frequencies. Modes of opposite symmetries do not interact, so their dispersion curves can cross; for example, the lowest-frequency antisymmetric (red) mode does not share symmetry with the fundamental TEM mode of a parallel plate waveguide (blue, dashed), so a crossing occurs. (c.) Dispersion diagram of a gold SIS structure with the same geometrical parameters as in (b) calculated by finite element analysis, with material dispersion and losses taken into account (d.) Zoom in on the low frequency bands for a PEC SIS structure for gaps g = 10μm (solid lines) and 50μm (dashed lines) and a = 5μm, d = 10μm, and h = 50μm. The light line and the groove resonance frequency are shown in dotted black lines. The single surface SSP dispersion is shown by the dashed black line. The antisymmetric (red) mode becomes very flat for small gaps g. Inset: magnetic field distributions of approximately one period of the symmetric and antisymmetric modes for the points in the dispersion indicated by circular markers. The charge distribution on the two metallic surfaces has the opposite symmetry compared to that of the magnetic fields.

Fig. 4
Fig. 4

(a.) Normalized magnetic fields in an SIS photonic-plasmonic mode converter calculated by the finite element method when a symmetric mode is injected from the left. (b.) The relative magnitude of the power flow in the mode converter. In the photonic mode on the left side, the majority of the power is flowing through the center of the waveguide, whereas in the plasmonic mode on the right side, the power flow is confined to the edges of the waveguide (c.) Dispersion diagram of an SIS waveguide with a = 5μm, d = 10μm, and g = 50μm for different values of h. The operating frequency of the mode converter is indicated by the horizontal dotted black line and the light line is indicated by the diagonal dashed black line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

4 π g λ 0 1 + ( k x / k z ) 2 + 2 ϕ = 2 π m
r i j = k z , j / η i k z , i / η j k z , j / η i + k z , i / η j
t i j = 2 k z , j / η i k z , j / η i + k z , i / η j
D i j = 1 t i j ( 1 r i j r i j 1 )
Φ l = ( e i k z , l h 0 0 e i k z , l h )
r c = | r c | e i ϕ = ( d a k z k 0 ) + ( k 0 + d a k z ) e 2 i k 0 h ( d a k z + k 0 ) ( k 0 d a k z ) e 2 i k 0 h .
β 2 = ( a d ) 2 k 0 2 tan 2 ( k 0 h ) + k 0 2 , tan ( k 0 h ) > 0
1 = k 0 β 2 k 0 2 a d tan ( k 0 h ) [ β 2 k 0 2 k 0 a d tanh ( g β 2 k 0 2 ) tan ( k 0 h ) β 2 k 0 2 k 0 tanh ( g β 2 k 0 2 ) a d tan ( k 0 h ) ]
β 2 k 0 2 k 0 tanh ( g 2 β 2 k 0 2 ) = a d tan ( k 0 h )
β 2 k 0 2 k 0 coth ( g 2 β 2 k 0 2 ) = a d tan ( k 0 h )

Metrics