Abstract

We present a tunable notch filter having a wide terahertz (THz) frequency range and a low-pass filter (LPF) having a 0.78 THz cutoff frequency. Single slit and multiple slits are positioned at the center of air gaps in tapered parallel-plate waveguides (TPPWG) to obtain the notch filter and LPF, respectively. The notch filter has a dispersion-free and low-loss transverse magnetic (TM) mode. The Q factor was proved to be 138, and the resonant frequency is easily tunable by adjusting the air gaps between TPPWG. On the other hand, the cut off frequency of the LPF was determined using a Bragg stop band, which depends on slit period. The LPF has a transition width of 68 GHz at the cutoff frequency and a dynamic range of 35 dB at stop bands. In addition, the characteristics of such filters were analyzed using finite-difference time-domain (FDTD) simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  2. P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
    [CrossRef]
  3. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
    [CrossRef] [PubMed]
  4. Z. Jian, J. Pearce, and D. M. Mittleman, “Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy,” Opt. Lett. 29(17), 2067–2069 (2004).
    [CrossRef] [PubMed]
  5. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
    [CrossRef]
  6. A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
    [CrossRef]
  7. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
    [CrossRef]
  8. S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
    [CrossRef]
  9. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009).
    [CrossRef] [PubMed]
  10. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
    [CrossRef]
  11. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
    [CrossRef] [PubMed]
  12. M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
    [CrossRef]
  13. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
    [CrossRef]
  14. R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).
  15. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
    [CrossRef]
  16. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express 19(1), 162–167 (2011).
    [CrossRef] [PubMed]
  17. M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
    [CrossRef]

2011 (3)

2010 (5)

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

2009 (3)

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

2008 (1)

A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[CrossRef]

2007 (2)

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

2005 (1)

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

2004 (1)

2001 (1)

Astley, V.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Beigang, R.

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
[CrossRef]

Bingham, A. L.

A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

Chang, H.-C.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Chen, H.-Z.

Fernandez-Dominguez, A. I.

Garcia-Vidal, F. J.

George, P.

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

Grischkowsky, D.

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
[CrossRef]

S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef] [PubMed]

Harsha, S.

S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Harsha, S. S.

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

Jeon, T.-I.

Ji, Y. B.

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

Jian, Z.

Kang, D. H.

Kim, D. S.

Kim, S.-H.

Lai, C.-H.

Laman, N.

S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Lee, E. S.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Manolatou, C.

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

Martin-Moreno, L.

McCracken, B.

Mendis, R.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef] [PubMed]

Mittleman, D. M.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Z. Jian, J. Pearce, and D. M. Mittleman, “Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy,” Opt. Lett. 29(17), 2067–2069 (2004).
[CrossRef] [PubMed]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Pearce, J.

Peng, J.-L.

Rana, F.

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

Shutler, A. J.

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

Theuer, M.

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
[CrossRef]

You, B.

Zhao, Y.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

Appl. Phys. Lett. (9)

P. George, C. Manolatou, F. Rana, A. L. Bingham, and D. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

M. Theuer, R. Beigang, and D. Grischkowsky, “Adiabatic compression of terahertz waves using metal flares,” Appl. Phys. Lett. 96(19), 191110 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

M. Theuer, A. J. Shutler, S. S. Harsha, R. Beigang, and D. Grischkowsky, “Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation,” Appl. Phys. Lett. 98(7), 071108 (2011).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (2)

R. Mendis and D. M. Mittleman, “A 2-D artificial dielectric with 0 ≤ n < 1 for the terahertz region,” IEEE Microw. Wirel. Compon. Lett. 58(7), 1993–1998 (2010).

A. L. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18(7), 428–430 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of TPPWG and slit sample. (a) THz beam propagating along the upper side and the lower side of a stainless steel slit. (b) Photo image of slit with 100-μm slit width.

Fig. 2
Fig. 2

(a) Measured THz pulse for a 92-μm air gap. The inset shows the expanded THz ringing from 30 ps to 66 ps. (b) Spectrum of the THz pulse. (c) Absorbance spectrum zoomed in on the resonance. (d)-(f) identical to (a)-(c) but for a 105-μm air gap.

Fig. 3
Fig. 3

FDTD simulation with 92-μm air gap and 1.519 THz continuous wave source. The arrows indicate THz beam incident to the air gap. (a) E field intensity distribution; (b) Hz field distribution; (c) Ey field distribution.

Fig. 4
Fig. 4

(a) Resonance frequency shift of a notch filter according to air gaps, slit width, and slit thickness. The inset shows basic dimension of the slit and air gap. (b) Resonance frequency shift of a notch according to refractive index. The inset shows resonance frequency with refractive index from 1 to 1.3.

Fig. 5
Fig. 5

(a) Slit images in region I and region VII. Areas from region II to region VI are not shown in the figure because of limited space but these areas are continuously connected. (b) Bragg stop band positions in each region. The red vertical dashed line indicates 2.3 THz. (c) FDTD simulation of E field intensity distribution for 2.3 THz continuous wave source.

Fig. 6
Fig. 6

(a) Comparison of a THz reference pulse (black) without slits in the stainless steel sheet and output a THz pulse (red) with slits in the stainless steel sheet. (b) The spectra of the reference (black) and output (red). The dashed spectrum indicates a numerically modified reference spectrum. The inset shows expended figure near the cutoff frequency. (c) Comparison of power Transmission in the measurement (red) and FDTD simulation (black).

Tables (1)

Tables Icon

Table 1 Dimensions of Each Region of the Slit Used in LPF a

Metrics