Abstract

The lack of optical isolators has limited the serial integration of components in the development of photonic integrated circuits. Isolators are inherently nonreciprocal and, as such, require nonreciprocal optical propagation. We propose a class of integrated photonic devices that make use of electrically-generated electron spin polarization in semiconductors to cause nonreciprocal TE/TM mode conversion. Active control over the non-reciprocal mode coupling rate allows for the design of electrically-controlled isolators, circulators, modulators and switches. We analyze the effects of waveguide birefringence and absorption loss as limiting factors to device performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [CrossRef]
  2. H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
    [CrossRef]
  3. X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
    [CrossRef]
  4. Tauhid R. Zaman, Xiaoyun Guo, and Rajeev J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol. 26, 291–302 (2008).
    [CrossRef]
  5. N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
    [CrossRef]
  6. G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
    [CrossRef]
  7. T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
    [CrossRef]
  8. Vadym Zayets, Mukul C. Debnath, and Ando Koji, “Optical isolation in Cd1–x MnxTe magneto-optical waveguide grown on GaAs substrate,” J. Opt. Soc. Am. B 22, 281–285 (2005).
    [CrossRef]
  9. T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
    [CrossRef]
  10. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
    [CrossRef]
  11. Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
    [CrossRef]
  12. D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
    [CrossRef]
  13. T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982).
    [CrossRef]
  14. H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7dB/mm TE mode nonreciprocal attenuation.” J. Lightwave Technol. 24, 38–43 (2006).
    [CrossRef]
  15. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009).
    [CrossRef]
  16. F. Meier and B. P. Zakharchenya, Optical Orientation (Elsevier Science Ltd., 1984).
  17. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
    [CrossRef] [PubMed]
  18. A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
    [CrossRef]
  19. V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
    [CrossRef]
  20. C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).
  21. W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
    [CrossRef]
  22. N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
    [CrossRef] [PubMed]
  23. D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007).
    [CrossRef]
  24. H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
    [CrossRef] [PubMed]
  25. B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
    [CrossRef]
  26. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron . QE-9, 919–933 (1973).
    [CrossRef]
  27. C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977).
    [CrossRef]
  28. B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005).
    [CrossRef]
  29. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
    [CrossRef]
  30. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
    [CrossRef]

2010

H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
[CrossRef]

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

2009

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009).
[CrossRef]

2008

2007

D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007).
[CrossRef]

H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
[CrossRef] [PubMed]

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
[CrossRef]

2006

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7dB/mm TE mode nonreciprocal attenuation.” J. Lightwave Technol. 24, 38–43 (2006).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

2005

B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005).
[CrossRef]

Vadym Zayets, Mukul C. Debnath, and Ando Koji, “Optical isolation in Cd1–x MnxTe magneto-optical waveguide grown on GaAs substrate,” J. Opt. Soc. Am. B 22, 281–285 (2005).
[CrossRef]

X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

2004

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

2002

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

2000

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

1999

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

1997

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

1995

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

1982

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982).
[CrossRef]

1977

C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977).
[CrossRef]

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron . QE-9, 919–933 (1973).
[CrossRef]

1866

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Akazaki, T.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

Averkiev, N. S.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Awschalom, D. D.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

Bernevig, B. A.

B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005).
[CrossRef]

Blajnov, P. A.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Button, C. C.

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

Chan, S. P.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Cui, L. J.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Culcer, D.

D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007).
[CrossRef]

Debnath, Mukul C.

Dötsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Emerson, N. G.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Engel, H.-A.

H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
[CrossRef] [PubMed]

Enoki, T.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Ge, W. K.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Ghosh, S.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

Gossard, A. C.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

Goto, S.

H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
[CrossRef]

Guo, X.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
[CrossRef]

Guo, Xiaoyun

Hak, D.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Halperin, B. I.

H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
[CrossRef] [PubMed]

Hanbicki, A. T.

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

He, H. T.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Headley, W. R.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Hermann, C.

C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977).
[CrossRef]

Hey, R.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Inoue, Y.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Ishii, M.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Itskos, G.

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

Jonker, B. T.

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

Kato, Y. K.

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

Kioseoglou, G.

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

Koehl, W. F.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Koji, Ando

Kubota, E.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Lau, W. H.

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Liu, A.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Lu Ding,

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Marshall, D.

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Mazilu, M.

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

Meier, F.

F. Meier and B. P. Zakharchenya, Optical Orientation (Elsevier Science Ltd., 1984).

Miller, A.

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

Mishra, U. K.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Mizumoto, T.

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982).
[CrossRef]

Mori, T.

H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
[CrossRef]

Muto, S.

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Myers, R. C.

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

Naito, Y.

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982).
[CrossRef]

Nakamura, S.

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Nakano, Y.

Nishikawa, Y.

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Nitta, J.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

Norman, B. M.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

Osgood, R. M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Paniccia, M. J.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Passaro, V. M. N.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Petrou, A.

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

Ploog, K. H.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Png, C. E.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Poblenz, C.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Ram, R. J.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
[CrossRef]

Ram, Rajeev J.

Rashba, E. I.

H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Samarth, N.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

Shimizu, H.

H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
[CrossRef]

H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7dB/mm TE mode nonreciprocal attenuation.” J. Lightwave Technol. 24, 38–43 (2006).
[CrossRef]

Shimokozono, M.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Shintaku, T.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Sih, V.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Silov, A. Yu.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Speck, J. S.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Stephens, J.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

Stern, N. P.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

Sugimoto, N.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Swenson, B.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Tackeuchi, A.

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Takayanagi, H.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

Tate, A.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Terui, J.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

Timotijevic, B.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Trowbridge, C. J.

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

Wang, J. N.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Waugh, P.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

Weisbuch, C.

C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977).
[CrossRef]

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Winkler, R.

D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007).
[CrossRef]

Wolter, J. H.

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

Wong, M. H.

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

Xiang, G.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

Yang, C. L.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron . QE-9, 919–933 (1973).
[CrossRef]

Yokoyama, N.

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009).
[CrossRef]

Zakharchenya, B. P.

F. Meier and B. P. Zakharchenya, Optical Orientation (Elsevier Science Ltd., 1984).

Zaman, T.

X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
[CrossRef]

Zaman, T. R.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

Zaman, Tauhid R.

Zayets, Vadym

Zeng, Y. P.

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Zhang, S.-C.

B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005).
[CrossRef]

Zhu, M.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

Appl. Phys. Express

H. Shimizu, S. Goto, and T. Mori, “Optical isolation using nonreciprocal polarization rotation in Fe-InGaAlAs/InP semiconductor active waveguide optical isolators,” Appl. Phys. Express 3, 072201 (2010).
[CrossRef]

Appl. Phys. Lett.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP Waveguide,” Appl. Phys. Lett. 90, 023514 (2007).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, “All-optical picosecond switching of a quantum well etalon using spin-polarization relaxation,” Appl. Phys. Lett. 66, 839–841 (1995).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009).
[CrossRef]

A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, “Current-induced spin polarization at a single heterojunction,” Appl. Phys. Lett. 85, 5929–5931 (2004).
[CrossRef]

W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra, J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization in gallium nitride,” Appl. Phys. Lett. 95, 072110 (2009).
[CrossRef]

A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor,” Appl. Phys. Lett. 80, 1240 (2002).
[CrossRef]

IEEE J. Quantum Electron

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron . QE-9, 919–933 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

G. T. Reed, G. Z. Mashanovich, W. R. Headley, B. Timotijevic, F. Y. Gardes, S. P. Chan, P. Waugh, N. G. Emerson, C. E. Png, M. J. Paniccia, A. Liu, D. Hak, and V. M. N. Passaro, “Issues associated with polarization independence in silicon photonics,” IEEE J. Sel. Top. Quantum Electron . 12, 1335–1344 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Sugimoto, T. Shintaku, A. Tate, J. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11, 355–357 (1999).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for a polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech . MTT-30, 922–925 (1982).
[CrossRef]

J. Appl. Phys.

D. Marshall, M. Mazilu, A. Miller, and C. C. Button “Polarization switching and induced birefringence in In-GaAsP multiple quantum wells at 1.5μm,” J. Appl. Phys. 91, 4090 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[CrossRef]

Nat. Phys.

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31 (2005).
[CrossRef]

Phys. Rev. B

D. Culcer and R. Winkler, “Steady states of spin distributions in the presence of spin-orbit interactions,” Phys. Rev. B 76, 245322 (2007).
[CrossRef]

B. M. Norman, C. J. Trowbridge, J. Stephens, A. C. Gossard, D. D. Awschalom, and V. Sih, “Mapping spin-orbit splitting in strained (In,Ga)As epilayers,” Phys. Rev. B 82, 081304 (2010).
[CrossRef]

C. Weisbuch and C. Hermann, “Optical detection of conduction-electron spin resonance in GaAs, Ga1–xInxAs, and Ga1–xAlxAs,” Phys. Rev. B 15, 816–822 (1977).
[CrossRef]

B. A. Bernevig and S.-C. Zhang, “Spin splitting and spin current in strained bulk semiconductors,” Phys. Rev. B 72, 115204 (2005).
[CrossRef]

Phys. Rev. Lett.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced spin polarization in strained semiconductors,” Phys. Rev. Lett. 93, 176601 (2004).
[CrossRef] [PubMed]

H.-A. Engel, E. I. Rashba, and B. I. Halperin, “Out-of-plane spin polarization from in-plane electric and magnetic fields,” Phys. Rev. Lett. 98, 036602 (2007).
[CrossRef] [PubMed]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current induced polarization and the spin hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef] [PubMed]

C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, “Spectral dependence of spin photocurrent and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas,” Phys. Rev. Lett. 96, 186605 (2006).

Proc. SPIE

X. Guo, T. Zaman, and R. J. Ram, “Magneto-optical semiconductor waveguides for integrated isolators,” Proc. SPIE 5729, 152–159 (2005).
[CrossRef]

Other

F. Meier and B. P. Zakharchenya, Optical Orientation (Elsevier Science Ltd., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental geometry for measurement of Faraday rotation due to current induced spin polarization. In-plane magnetic field B causes spins aligned along −ex to precess out of the sample plane, leading to a rotation of the polarization angle of the probe beam which travels along ez .

Fig. 2
Fig. 2

(a) Faraday rotation as a function of applied magnetic field for an applied electric field along [11̄0] of 5 mV/μm at 30 K (solid red line: fit to data). (b) Faraday rotation amplitude per applied electric field (black) and device absorption (red) as a function of wavelength.

Fig. 3
Fig. 3

(a) Maximum normalized power transfer between modes as a function of Δ/k. A power transfer of 95% requires Δ/k < 0.459. (b) Intensity in an undriven mode coupled to a driven mode at rate k, with phase velocity splitting Δ, plotted as a function of dimensionless parameters Δ/k and kz, where z is the position along the waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FOM = θ α
I I 0 = 4 4 + ( Δ / k ) 2 sin 2 ( 1 2 [ 4 + { Δ / k } 2 ] 1 / 2 k z )

Metrics