Abstract

The impact of delayed optical feedback on the supercontinuum noise properties is investigated numerically and experimentally. The supercontinuum is generated by coupling femtosecond laser pulses into a microstructured fiber within a ring resonator, which introduces the optical feedback. The power noise and spectral amplitude noise properties of this feedback system are numerically and experimentally compared with single-pass supercontinuum generation. In a demonstrative experiment via optical feedback the power noise could be reduced by 15 dB and the spectral amplitude noise could be reduced by up to 28 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  3. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
    [CrossRef] [PubMed]
  4. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
    [CrossRef] [PubMed]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  7. H. Zhang, S. Yu, J. Zhang, and W. Gu, “Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Express 15, 1147–1152 (2007).
    [CrossRef] [PubMed]
  8. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
    [CrossRef]
  9. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008).
    [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
    [CrossRef] [PubMed]
  11. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [CrossRef] [PubMed]
  12. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
    [CrossRef]
  13. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
    [CrossRef] [PubMed]
  14. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005).
    [CrossRef] [PubMed]
  15. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett. 32, 2629–2631 (2007).
    [CrossRef] [PubMed]
  16. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11954–11968 (2008).
    [CrossRef] [PubMed]
  17. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005).
    [CrossRef] [PubMed]
  18. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - numerical investigations,” Opt. Express 18, 20667–20672 (2010).
    [CrossRef] [PubMed]
  19. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - experimental verifications,” Opt. Express 18, 24611–24618 (2010).
    [CrossRef] [PubMed]
  20. M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
    [CrossRef] [PubMed]
  21. N. Brauckmann, M. Kues, T. Walbaum, P. Groß, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18, 7190–7202 (2010).
    [CrossRef] [PubMed]
  22. G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
    [CrossRef] [PubMed]
  23. G. Sucha, D. S. Chemla, and S. R. Bolton, “Effects of cavity topology on the nonlinear dynamics of additive-pulse mode-locked lasers,” J. Opt. Soc. Am. B 15, 2847–2853 (1998).
    [CrossRef]
  24. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
    [CrossRef] [PubMed]
  25. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  26. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinuum generation in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
    [CrossRef] [PubMed]
  27. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
    [CrossRef]
  28. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [CrossRef]
  29. NKT Photonics, “NL-PM-750 data sheet,” http://www.nktphotonics.com/files/files/datasheet_nl-pm-750.pdf .

2010

2009

M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
[CrossRef]

2008

2007

2006

2005

2004

2003

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

2002

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

2001

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

1999

1998

1995

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Agrawal, G. P.

Aguirre, A. D.

Bang, O.

Bolton, S. R.

Brauckmann, N.

Buchholz, A.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Buchter, S. C.

Chemla, D. S.

Chudoba, C.

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef] [PubMed]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
[CrossRef]

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Falk, P.

Fallnich, C.

Feder, K. S.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

Genty, G.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Ghanta, R. K.

Groß, P.

Gu, W.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hänsel, M.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Hansen, K. P.

Hartl, I.

Heuer, M.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hönninger, C.

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kaivola, M.

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Kaminski, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Keller, U.

Kimmelma, O.

Knox, W. H.

Ko, T. H.

Kopf, D.

Kues, M.

Lederer, M.

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Li, X. D.

Lin, Q.

Lu, F.

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Mitschke, F.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Morier-Genoud, F.

Moselund, P. M.

Moser, M.

Newbury, N. R.

Nicholson, J. W.

Nishizawa, N.

Paschotta, R.

Popov, S. V.

Räikkönen, E.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Rasmussen, P. D.

Schwache, A.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Seitz, W.

Steinmeyer, G.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Sucha, G.

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Taylor, J. R.

Thomsen, C. L.

Travers, J. C.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

Walbaum, T.

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Westbrook, P. S.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Yu, S.

Zhang, H.

Zhang, J.

Appl. Phys. B

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2009).
[CrossRef]

Appl. Phys. Lett.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

J. Microsc.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227, 203–215 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Nature

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express

B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinuum generation in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[CrossRef] [PubMed]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1145–1160 (2006).
[CrossRef] [PubMed]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
[CrossRef] [PubMed]

H. Zhang, S. Yu, J. Zhang, and W. Gu, “Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Express 15, 1147–1152 (2007).
[CrossRef] [PubMed]

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11954–11968 (2008).
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008).
[CrossRef] [PubMed]

M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
[CrossRef] [PubMed]

N. Brauckmann, M. Kues, T. Walbaum, P. Groß, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18, 7190–7202 (2010).
[CrossRef] [PubMed]

N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - numerical investigations,” Opt. Express 18, 20667–20672 (2010).
[CrossRef] [PubMed]

N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase - experimental verifications,” Opt. Express 18, 24611–24618 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, “Dynamical pulse shaping in a nonlinear resonator,” Phys. Rev. A 52, 830–838 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other

NKT Photonics, “NL-PM-750 data sheet,” http://www.nktphotonics.com/files/files/datasheet_nl-pm-750.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup; part A: laser system and feedback cavity, part B: power noise measurements, part C: spectral amplitude noise measurements. BS: beam splitter, MSF: microstructured fiber, MO: 40x microscope objective, GS: uncoated glass substrate, F: spectral bandpass filter, PD: photodiode, M: mirror only used for option B, for more details see text.

Fig. 2
Fig. 2

Schematic sketch of the program blocks performed within the numerical simulations of the SC feedback system. Path A: procedure for feeding back the whole SC spectral bandwidth for analyzing the average power noise. Path B: procedure for feeding back the spectrally filtered SC for analyzing the spectral amplitude noise. For a detailed explanation see text.

Fig. 3
Fig. 3

Numerical results: feedback system output power as a function of the feedback phase for pump powers from 1 mW to 10 mW in steps of 1 mW. The feedback system showed a phase and intensity dependent behavior. Regions with approached proximate curves (one example is marked with the blue circle) indicate noise reduction; regions with far separated proximate curves (one example is marked with the red ellipse) indicate noise amplification. a) exact calculations; b) calculations with adapted wavelength-dependent response function of the photodiode that was used in the experiments.

Fig. 4
Fig. 4

Numerical results: a) evolution of the pump power varied in the range from 6.8 mW to 6.9 mW; b) according evolution of the resulting feedback system output power.

Fig. 5
Fig. 5

Power noise measurement at a pump power of 8.5 mW with perturbations at a frequency of 450 kHz; a) normalized phase dependent evolution of the radio frequency spectrum at the feedback system output; b) corresponding evolution of the noise peak amplitude, where the red curve indicates the peak amplitude of the single-pass system.

Fig. 6
Fig. 6

Numerical results without filter: optical spectra for varying pump power between 6.8 mW and 6.9 mW (180 spectra are plotted on top of each other) a) without and b) with feedback; c) corresponding spectral variations without (red dashed line) and with (black solid line) feedback; d) corresponding relative spectral variations without (red dashed line) and with (black solid line) feedback.

Fig. 7
Fig. 7

Feedback system input pulses for constructive (blue dotted line) and destructive interference (black solid line) conditions and pump pulse (red dashed line) at a pump power of 7ṁW a) without any filter and b) with spectral bandpass filter. c) Numerical results with spectral filtering: resulting feedback system output power in dependence on the feedback phase, when the pump power was varied from 1 mW to 10 mW in steps of 1 mW. The feedback system showed a phase and intensity dependent behavior. Regions with approached proximate curves (one example is marked with the blue circle) indicate noise reduction.

Fig. 8
Fig. 8

Numerical results with introduced spectral filter: a) evolution of the pump power varied sinusoidally in the range from 5.7 mW to 5.8 mW; b) according evolution of the resulting feedback system power.

Fig. 9
Fig. 9

Numerical results with introduced spectral filter: optical spectra for varying system input power between 5.7 mW and 5.8 mW (180 spectra are plotted on top of each other) a) without and b) with feedback; c) corresponding spectral variations without (red dashed line) and with (black solid line) feedback and d) normalized spectral variations.

Fig. 10
Fig. 10

Spectrally resolved analysis of the SC noise properties; a) generated optical spectrum without feedback. The spectral ranges that were recorded are shown as bars and labeled with PD 1 to PD 4; b) phase dependent noise peak amplitude with feedback (black solid line) and reference noise peak amplitude for single-pass SC generation (red dashed line) integrated over the whole pulse; c–e) phase dependent noise peak amplitudes for the spectral regions around 730 nm, 775 nm, and 830 nm.

Tables (1)

Tables Icon

Table 1 Power Reduction Results for Different Amplitude Values of Input Noise

Metrics