Abstract

A new class of optical fiber is presented that departs from the circular-core symmetry common to conventional fibers. By using a high-aspect-ratio (~30:1) rectangular core, the mode area can be significantly expanded well beyond 10,000 μm2. Moreover, by also specifying a very small refractive-index step at the narrow core edges, the core becomes “semi-guiding,” i.e. it guides in the narrow dimension and is effectively un-guiding in the wide mm-scale dimension. The mode dependence of the resulting Fresnel leakage loss in the wide dimension strongly favors the fundamental mode, promoting single-mode operation. Since the modal loss ratios are independent of mode area, this core structure offers nearly unlimited scalability. The implications of using such a fiber in fiber laser and amplifier systems are also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  2. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976).
    [CrossRef]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  4. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  5. Z. Jiang and J. R. Marciante, “Loss measurements for optimization of large-mode-area helical-core fibers,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FWA3.
  6. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  7. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  8. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  9. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [CrossRef]
  10. http://www.nlight.net/news/releases/101~nLIGHT-Introduces-New-NonCircular-Optical-Fiber-Geometries .
  11. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
    [CrossRef] [PubMed]
  12. C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
    [CrossRef]
  13. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO 2006, paper CThZ3.
  14. D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
    [CrossRef]
  15. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 28, 3156 (2010).
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).
  17. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1(1), 58–106 (2009).
    [CrossRef]
  18. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12(5), 1015–1025 (1973).
    [CrossRef] [PubMed]
  19. H. Rao, M. J. Steel, R. Scarmozzino, and R. M. Osgood., “Complex propagators for evanescent waves in bidirectional beam propagation method,” J. Lightwave Technol. 18(8), 1155–1160 (2000).
    [CrossRef]
  20. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
    [CrossRef]
  21. J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
    [CrossRef]
  22. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28(1), 363–370 (1992).
    [CrossRef]
  23. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
    [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  25. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [CrossRef]
  26. O. F. S. Laboratories and N. J. Somerset, 08873, http://www.ofsoptics.com/labs/ .
  27. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [CrossRef] [PubMed]
  28. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [CrossRef] [PubMed]
  29. J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett. 35(11), 1828–1830 (2010).
    [CrossRef] [PubMed]
  30. V. V. Shkunov, D. A. Rockwell, F. P. Strohkendl, J. R. Marciante, D. J. Trevor, and D. J. DiGiovanni, “Semi-guiding high aspect ratio core (SHARC) fiber laser,” Solid-State and Diode Laser Technology Review, (Broomfield, 2010).

2011

C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
[CrossRef]

2010

2009

2008

2007

2006

2005

2000

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1992

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28(1), 363–370 (1992).
[CrossRef]

1991

J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
[CrossRef]

1990

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[CrossRef]

1976

1975

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[CrossRef]

1973

Ando, T.

J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
[CrossRef]

Ankele, G.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[CrossRef]

Barty, C. P. J.

Beach, R. J.

Broeng, J.

Chen, X.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Chung, Y.

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[CrossRef]

Clarkson, W. A.

Dagli, N.

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[CrossRef]

Dajani, I.

C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
[CrossRef]

Dawson, J. W.

Deguil-Robin, N.

Demeritt, J.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Dimarcello, F. V.

Dong, L.

Ermeneux, S.

Fini, J. M.

Ghalmi, S.

Goldberg, L.

Goodno, G. D.

Gray, S.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Hadley, G. R.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28(1), 363–370 (1992).
[CrossRef]

Heebner, J. E.

Hu, J.

Jakobsen, C.

Kliner, D. A. V.

Koplow, J. P.

Li, J.

Li, M.-J.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Liem, A.

Limpert, J.

Manek-Hönninger, I.

Marciante, J. R.

Marcuse, D.

McComb, T. S.

McNaught, S. J.

Menyuk, C. R.

Messerly, M. J.

Monberg, E.

Moore, G. T.

C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
[CrossRef]

Nakano, H.

J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

Nolte, S.

Osgood, R. M.

Pax, P. H.

Peng, X.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Petersson, A.

Ramachandran, S.

Rao, H.

Reisinger, A.

Richardson, D. J.

Rockwell, D. A.

Roides, R. G.

Röser, F.

Rothenberg, J. E.

Rothhardt, J.

Ruffin, A. B.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Salin, F.

Scarmozzino, R.

Schmidt, O.

Schreiber, T.

Shkunov, V. V.

Shverdin, M. Y.

Siders, C. W.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Sridharan, A. K.

Stappaerts, E. A.

Steel, M. J.

Thielen, P. A.

Tünnermann, A.

Ulrich, R.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[CrossRef]

Walton, D.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Wang, J.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Weber, M. E.

Wickham, M. G.

Wisk, P.

Yamauchi, J.

J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
[CrossRef]

Yan, M. F.

Yvernault, P.

Zellmer, H.

Zenteno, L.

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

Zeringue, C. M.

C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27(6), 337–339 (1975).
[CrossRef]

Electron. Lett.

J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett. 27(18), 1663–1666 (1991).
[CrossRef]

IEEE J. Quantum Electron.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28(1), 363–370 (1992).
[CrossRef]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE 6102, 610205, 610205-8 (2006).
[CrossRef]

C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE 7914, 791409, 791409-9 (2011).
[CrossRef]

Other

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO 2006, paper CThZ3.

C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.

Z. Jiang and J. R. Marciante, “Loss measurements for optimization of large-mode-area helical-core fibers,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FWA3.

http://www.nlight.net/news/releases/101~nLIGHT-Introduces-New-NonCircular-Optical-Fiber-Geometries .

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).

O. F. S. Laboratories and N. J. Somerset, 08873, http://www.ofsoptics.com/labs/ .

V. V. Shkunov, D. A. Rockwell, F. P. Strohkendl, J. R. Marciante, D. J. Trevor, and D. J. DiGiovanni, “Semi-guiding high aspect ratio core (SHARC) fiber laser,” Solid-State and Diode Laser Technology Review, (Broomfield, 2010).

Supplementary Material (2)

» Media 1: AVI (4347 KB)     
» Media 2: MOV (12727 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic cross section of a semi-guiding high-aspect-ratio core (SHARC) fiber. Similar to the definition used for semiconductor lasers, the fast and slow axes of the SHARC fiber are indicated in the figure. The rectangular core has thickness h, width w and refractive index nco. The core is surrounded by fast axis claddings of index ncl and slow axis claddings of index nscl.

Fig. 2
Fig. 2

Two-dimensional (slow axis and propagation axis) depiction of modal loss in a SHARC fiber. Higher-order modes radiate out into the cladding over much shorter propagation distances than do the lower-order modes. In the figure, the modes are spaced out horizontally for clarity.

Fig. 3
Fig. 3

The cross section of the SHARC fiber can be factorized and reduced to two independent step-index planar waveguides for the fast and slow axes. Radiation out of the slow-axis edge of the waveguide (left) can be represented by a complex cladding refractive index in the effective planar waveguide of the slow-axis (right).

Fig. 4
Fig. 4

Normalized profiles for the three lowest-order slow-axis modes inside the SHARC core.

Fig. 5
Fig. 5

Propagation loss for the first three modes (s = 0, 1, and 2) as a function of the slow-axis cladding index step nscl − nco calculated via Eq. (4) using w = 450 μm, h = 15 μm, λ = 1.06 μm, neff = 1.450803, and κ = 10−4.

Fig. 6
Fig. 6

Movies showing the transverse intensity profile propagating down the fiber axis when the core is fully guiding (top) and semi-guiding (bottom) (Media 1, Media 2). A uniform intensity profile is lunched into the core of each fiber. The dimensions of the frames are 300 μm (horizontal) × 46 μm (vertical) and are not shown to relative scale.

Fig. 7
Fig. 7

Slow-axis intensity profile along the fiber propagation axis when the core is (a) fully guiding, and (b) semi-guiding. A uniform (flat-top) intensity profile is lunched into the core of each fiber at the left side of the figure. The slow-axis edges of the waveguide are shown as horizontal dashed yellow lines. The dimensions of the frames are 800 μm (vertical) × 50 cm (horizontal) and are not shown to relative scale.

Fig. 8
Fig. 8

Propagation loss for the first three modes as a function of the slow-axis cladding index step. The points represent simulation results, while the curves are guides for the eye. Guiding and semi-guiding regimes are notated in the figure. The fiber core dimensions are w = 450 μm and h = 15 μm, and the wavelength λ = 1.06 μm,

Fig. 9
Fig. 9

Schematic cross section of SHARC fiber showing an additional physical leakage channel captured by BPM simulations.

Fig. 10
Fig. 10

Excess loss due to fast-axis coiling as a function of bend radius for a 1-m long SHARC fiber that has a 5-cm long straight section at the input and output ends of the fiber and 5-cm adiabatic transition regions between the straight sections and the coiled fiber (as shown in the inset). The points represent simulation results, while the curves are guides for the eye. The horizontal axis has been broken into two separate scales to highlight the transition region at small bend radii.

Fig. 11
Fig. 11

Cross-section of a high-aspect-ratio-core fiber fabricated at OFS Laboratories. The core and cladding dimensions are 14 μm × 139 μm and 270 μm × 840 μm, respectively. Photo courtesy of Dennis Trevor and David DiGiovanni of OFS Laboratories [30].

Fig. 12
Fig. 12

Schematic of SHARC fiber in coiled configuration (not to scale). Expansion shows the relative orientation of the fiber core with respect to the coil.

Tables (1)

Tables Icon

Table 1 Computation Parameters used in Simulations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n o = n e f f = n c o δ n f ; n 1 = n s c l + i κ
β s = ( 2 π λ ) n 0 2 ( n 0 2 n 1 2 ) sin 2 ( ξ )
sin ( ξ ) ( 2 π λ ) n 0 2 n 1 2 = ( π 2 ) ( 1 + s ) ξ
α s = ( 1 + s ) 2 ( λ 2 n 0 w 3 ) Im ( n 0 2 n 1 2 ) | n 0 2 n 1 2 |
E ( x , y , z ) z = i 2 k 0 n c o T 2 E ( x , y , z ) + i k 0 [ n 2 ( x , y ) n c o 2 2 n c o ] E ( x , y , z )
n e q 2 ( x , y , z ) = n 2 ( x , y ) [ 1 + 2 y R b ( z ) ]

Metrics