Abstract

In this paper we present a novel technological approach for the fabrication of multilevel gratings in the resonance domain. A coded chromium mask is used to avoid alignment errors in electron beam lithography, which typically occur within the standard multistep binary micro-optics technology. The lateral features of all phase levels of the grating are encoded in a single chromium mask. The final profile of the structure is obtained by selective etching process for each level. This new technological method is applied for the fabrication of two different three-level gratings in resonance domain. The corresponding optical response as well as structural characterizations are presented and discussed. In particular, a first order diffraction efficiency of 90% is demonstrated for a grating period twice the wavelength at normal incidence.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36(20), 4635–4643 (1997).
    [CrossRef] [PubMed]
  2. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive elements,” MIT Tech. rep. 914 (MIT, 1989).
  3. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, and J. Ruoff, “Rigorous analysis of shadowing effects in blazed transmission gratings,” Opt. Lett. 31(24), 3638–3640 (2006).
    [CrossRef] [PubMed]
  4. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998).
    [CrossRef] [PubMed]
  5. P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517 (1999).
    [CrossRef]
  6. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000).
    [CrossRef] [PubMed]
  7. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express 18(13), 13444–13450 (2010).
    [CrossRef] [PubMed]
  8. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, and Y. Takeda, “Role of propagating modes in a double-groove grating with a +1st-order diffraction angle larger than the substrate-air critical angle,” Opt. Lett. 35(23), 3973–3975 (2010).
    [CrossRef] [PubMed]
  9. E. Noponen, J. Turunen, and A. Vasara, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31(28), 5910–5912 (1992).
    [CrossRef] [PubMed]
  10. M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
    [CrossRef] [PubMed]
  11. M. B. Stern, “Binary optics fabrication,” in Microoptics: Elements, Systems and Application, H. P. Herzig, ed. (Taylor & Francis, 1997), pp. 53–85.
  12. U. D. Zeitner and E. B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009 (2006).
    [CrossRef]
  13. C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53(1-4), 677–680 (2000).
    [CrossRef]
  14. M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142(1-3), 14–18 (1997).
    [CrossRef]
  15. U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
    [CrossRef]
  16. M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
    [CrossRef]

2010 (5)

2006 (2)

2000 (2)

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53(1-4), 677–680 (2000).
[CrossRef]

M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (2)

M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36(20), 4635–4643 (1997).
[CrossRef] [PubMed]

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142(1-3), 14–18 (1997).
[CrossRef]

1992 (1)

Astilean, S.

Benkenstein, T.

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

Brunner, R.

Cambril, E.

Chavel, P.

David, C.

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53(1-4), 677–680 (2000).
[CrossRef]

Dunkel, J.

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

Engheta, N.

Erdmann, M.

U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
[CrossRef]

Fleming, M. B.

Fujikawa, H.

Harzendorf, T.

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

Hutley, M. C.

Hyvärinen, H. J.

Iizuka, H.

Karvinen, P.

Kley, E. B.

U. D. Zeitner and E. B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Kley, E.-B.

U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
[CrossRef]

Kuittinen, M.

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142(1-3), 14–18 (1997).
[CrossRef]

Lalanne, P.

Launois, H.

Lee, M.-S. L.

Matthes, A.

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

Michaelis, D.

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
[CrossRef]

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

Noponen, E.

Oliva, M.

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

Pätz, D.

Rodier, J.-C.

Ruoff, J.

Sandfuchs, O.

Sato, K.

Sinzinger, S.

Takeda, Y.

Turunen, J.

Vasara, A.

Zeitner, U. D.

U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
[CrossRef]

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35(16), 2774–2776 (2010).
[CrossRef] [PubMed]

U. D. Zeitner and E. B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53(1-4), 677–680 (2000).
[CrossRef]

Opt. Commun. (1)

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142(1-3), 14–18 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (3)

U. D. Zeitner, D. Michaelis, E.-B. Kley, and M. Erdmann, “High performance gratings for space applications,” Proc. SPIE 7716, 77161K (2010).
[CrossRef]

M. Oliva, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, D. Michaelis, and U. D. Zeitner, “Smart technology for blazed multilevel gratings in resonance domain,” Proc. SPIE 7716, 77161L (2010).
[CrossRef]

U. D. Zeitner and E. B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Other (2)

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive elements,” MIT Tech. rep. 914 (MIT, 1989).

M. B. Stern, “Binary optics fabrication,” in Microoptics: Elements, Systems and Application, H. P. Herzig, ed. (Taylor & Francis, 1997), pp. 53–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic representation of a three-level grating profile. (b) Table with the parameters of grating A and B considered in this paper. (c) and (d) Efficiency of the first diffraction order versus the angle of incidence in air for grating A and B, respectively

Fig. 2
Fig. 2

Sequence of the most relevant steps of the fabrication process for a three-level grating. (a) Standard technology approach (b) Relaxed Alignment Technology approach. In step “I” and “II” equivalent masks for the two approaches are used for the deep etching into the substrate of level 1 and 2, respectively.

Fig. 3
Fig. 3

Influence of sizing and alignment error on the profile and diffraction efficiencies of the three-level gratings reported in this paper. a) Alignment errors: the “minus” sign indicates a shift of the second level resist mask with respect to the already etched level in the left direction, the “plus” sign in the right direction. The resulting structure’s profiles are shown at the bottom of the picture. (b) Effect of sizing errors in combination with the alignment errors shown in (a). Here, the “plus” and “minus” signs indicate an increase or decrease of the upper bar’s size respectively. (c),(d) Effect of simultaneous alignment and sizing errors on the relevant diffraction efficiencies and corresponding first order phase accumulation of grating A (c) and grating B (d). The phases correspond to a path length normalized to the operating wavelength. In the legend the first and the second numbers (expressed in nanometers) are related to alignment and sizing error, respectively. The “p” and “m” are used as abbreviation of “plus” and “minus” signs.

Fig. 4
Fig. 4

(a) Sequence of most relevant technological steps for the fabrication of a multilevel structure by Relaxed Alignment Technology approach using the same coded chromium mask like in Fig. 2b but leading to a different diffractive structure. (b) Examples of structures that can be realized by this approach.

Fig. 5
Fig. 5

Characterization of Grating A, (a) AFM 3D measurement. (b) SEM picture of grating A. (c) Interferometric wavefront measurement of the first order diffraction efficiency. (d) First order diffraction efficiency (ratio between first order transmitted intensity and the input intensity inside the substrate) vs. incidence angle: comparison between measured (quadrate-point line) and simulated (original design: dotted line; fabricated grating profile: continuous line) efficiency for TE and TM polarization.

Fig. 6
Fig. 6

Characterization of Grating “B”. (a) AFM measurement, inset: section of a corresponding SEM image. (b) First order diffraction efficiency vs. incidence angle: comparison between measured and simulated efficiency for TE polarization. The Simulation is here referred to the original desired profile. (c) Schematic illustration of the formation of the parasitic structure within the etching process.

Fig. 7
Fig. 7

(a) Influence of the parasitic structures on the efficiency at normal incidence (b) Simulation of diffraction efficiency of grating affected by artifacts of 250 nm depth: influence of the width.

Metrics