Abstract

This paper presents a novel sensor design and application of long period fiber grating (LPFG) for detection of methane. A styrene-acrylonitrile nano-film incorporating cryptophane A, which is sensitive to methane in close vicinity to the surface, is constructed onto the cladding of long-period grating. For optimal design of the LPFG sensor, the relationship between the resonant wavelength shift and the complex refractive index of sensing film is analyzed based on the coupled-mode theory. The change in refractive index of the sensing film, induced by methane, can easily be obtained as a shift in resonance wavelength. The prepared LPFG sensor with time response of 50 s and good sensitivity (~0.375 nm %−1) suitable for the detection of methane below 3.5 vol. % is demonstrated. The response of the sensor (wavelength shift) is linear with methane concentration within our tested range and a detection limit of about 0.2% is estimated for the new sensor.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
    [CrossRef]
  2. Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007).
    [CrossRef]
  3. S. W. James and R. P. Tatam, “Fiber optic sensors with nano-structured coatings,” J. Opt. A, Pure Appl. Opt. 8(7), S430–S444 (2006).
    [CrossRef]
  4. G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
    [CrossRef]
  5. C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
    [CrossRef]
  6. M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
    [CrossRef]
  7. J. Yang, L. Xu, and W. Chen, “An optical fiber methane gas sensing film sensor based on core diameter mismatch,” Chin. Opt. Lett. 8(5), 482–484 (2010).
    [CrossRef]
  8. S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
    [CrossRef] [PubMed]
  9. S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
    [CrossRef] [PubMed]
  10. Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
    [CrossRef]
  11. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [CrossRef] [PubMed]
  12. I. Del Villar, I. R. Matías, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
    [CrossRef] [PubMed]
  13. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30(7), 720–722 (2005).
    [CrossRef] [PubMed]
  14. X. Jiang and Z. Gu, “Design of a gas sensor based on a sensitive film coated phase-shifted long-period fiber grating,” J. Opt. 12(7), 075401 (2010).
    [CrossRef]
  15. J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
    [CrossRef]
  16. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [CrossRef] [PubMed]
  17. E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
    [CrossRef]
  18. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  19. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [CrossRef]
  20. C. Tsao, Optical Fibre Waveguide Analysis (Oxford University Press, 1992), Chap. 10.
  21. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber grating written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [CrossRef]
  22. Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
    [CrossRef]
  23. K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical Chemistry, 4th ed. (Houghton Mifflin Co., 2003), Chap. 18.
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999), Chap. 2.
  25. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]

2011

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

2010

2009

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

2008

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

2007

Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007).
[CrossRef]

Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
[CrossRef]

2006

2005

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[CrossRef] [PubMed]

I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30(7), 720–722 (2005).
[CrossRef] [PubMed]

2004

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

2003

2002

1997

1971

Abdelghani, A.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

Abe, I.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Achaerandio, M.

Arregui, F.

Arregui, F. J.

Ashwell, G. J.

Barnes, J.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Batty, W. J.

Benounis, M.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

Brown, R. S.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Caldas, P.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Campopiano, S.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Chen, W.

Cherif, K.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

Cheung, S. C.

Choi, M. M. F.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Contessa, L.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Crudden, C. M.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Cusano, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Cutolo, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Del Villar, I.

Deng, C.

Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
[CrossRef]

Dong, C.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Dreher, M.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Dutasta, J. P.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

Erdogan, T.

Fan, X.

Frazão, O.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Fuller, L.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

Giordano, M.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Gloge, D.

Gu, Z.

X. Jiang and Z. Gu, “Design of a gas sensor based on a sensitive film coated phase-shifted long-period fiber grating,” J. Opt. 12(7), 075401 (2010).
[CrossRef]

Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
[CrossRef]

Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007).
[CrossRef]

Guerra, G.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Hu, A. Z.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Iadicicco, A.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Jaffrezic-Renault, N.

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

James, S. W.

Jiang, J.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Jiang, X.

X. Jiang and Z. Gu, “Design of a gas sensor based on a sensitive film coated phase-shifted long-period fiber grating,” J. Opt. 12(7), 075401 (2010).
[CrossRef]

Korposh, S.

Lalanne, P.

Lee, S.-W.

Lein, G.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

Li, X.

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

Li, Z.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Loock, H.-P.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Matías, I.

Matías, I. R.

Oliveira, J.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Paquette, S.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

Pilla, P.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Pinto, J. L.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Plett, K.

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Ran, Z. L.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber grating written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[CrossRef]

Rao, Y. J.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber grating written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[CrossRef]

Rees, N. D.

Santhanam, K. S. V.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

Shi, Y.

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

Shuang, S.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Simões, E.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Tao, C.

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

Tatam, R. P.

Topliss, S.

Vadhavkar, S.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

Wang, Y. P.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber grating written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[CrossRef]

White, I. M.

Wu, S.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Xu, L.

Xu, Y.

Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007).
[CrossRef]

Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
[CrossRef]

Yang, J.

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

J. Yang, L. Xu, and W. Chen, “An optical fiber methane gas sensing film sensor based on core diameter mismatch,” Chin. Opt. Lett. 8(5), 482–484 (2010).
[CrossRef]

Zhang, Y.

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Zhu, T.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber grating written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[CrossRef]

Anal. Chim. Acta

S. Wu, Y. Zhang, Z. Li, S. Shuang, C. Dong, and M. M. F. Choi, “Mode-filtered light methane gas sensor based on cryptophane A,” Anal. Chim. Acta 633(2), 238–243 (2009).
[CrossRef] [PubMed]

Analyst (Lond.)

J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden, and H.-P. Loock, “Chemical sensor based on a long-period fiber grating modified by a functionalized polydimethylsiloxane coating,” Analyst (Lond.) 133(11), 1541–1549 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Chin. Opt. Lett.

J. Lightwave Technol.

J. Opt.

X. Jiang and Z. Gu, “Design of a gas sensor based on a sensitive film coated phase-shifted long-period fiber grating,” J. Opt. 12(7), 075401 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. W. James and R. P. Tatam, “Fiber optic sensors with nano-structured coatings,” J. Opt. A, Pure Appl. Opt. 8(7), S430–S444 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007).
[CrossRef]

Opt. Commun.

Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber grating written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Opt. Commun. 229(1–6), 209–221 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

Z. Gu, Y. Xu, and C. Deng, “Optical characteristics of coated long-period fiber grating and their sensing application,” Proc. SPIE 6800, 680013, 680013-8 (2007).
[CrossRef]

Sens. Actuators B Chem.

G. Lein, S. Paquette, S. Vadhavkar, L. Fuller, and K. S. V. Santhanam, “Batron P–Si microsensor for methane and its derivatives,” Sens. Actuators B Chem. 142(1), 147–151 (2009).
[CrossRef]

C. Tao, X. Li, J. Yang, and Y. Shi, “Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane,” Sens. Actuators B Chem. 156, 553–558 (2011).
[CrossRef]

M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107(1), 32–39 (2005).
[CrossRef]

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber period grating refractometer with nanocoating,” Sens. Actuators B Chem. 153(2), 335–339 (2011).
[CrossRef]

Other

C. Tsao, Optical Fibre Waveguide Analysis (Oxford University Press, 1992), Chap. 10.

K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical Chemistry, 4th ed. (Houghton Mifflin Co., 2003), Chap. 18.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Chemical structure of cryptophane A, which is globularly shaped and contain two cone-shaped cyclotriveratrylene (CTV) units attached to one another via three O-(CH2)2-O bridges.

Fig. 2
Fig. 2

(a) Structural diagram of the triple-clad long-period fiber grating methane sensing film sensor model and (b) refractive index profile.

Fig. 3
Fig. 3

Effects of the RI n f and extinction coefficient k f of sensing film on (a) the real part and (b) the imaginary part of the effective indices of the EH12 (ν = 4) cladding mode n cl (h = 0.5 μm).

Fig. 4
Fig. 4

Effects of (a) the RI n f and (b) extinction coefficient k f on resonant wavelength shifts Δλ res of the EH12 mode (h=500 nm, Λ=480 μm).

Fig. 5
Fig. 5

SEM micrograph of the cross-section of the fiber coated with SAN/cryptophane A.

Fig. 6
Fig. 6

Experimental apparatus for the detection of methane.

Fig. 7
Fig. 7

Transmission spectra of the sensor before and after exposing to methane.

Fig. 8
Fig. 8

Calibration curve between Δλ res and the methane concentration.

Fig. 9
Fig. 9

Sensor signal when exposed repeatedly to pure nitrogen and to 3.5% methane.

Tables (2)

Tables Icon

Table 1 Effect of Potential Interferents on the LPFG Sensor

Tables Icon

Table 2 Effect of the Relative Humidity on the LPFG Sensor

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ res = ( n co n cl ( ν ) ) Λ , ν = 1 , 2 , 3 ,
p l 2 2 Γ 9 ξ 12 2 ξ 23 2 + p l 3 2 Γ 10 ξ 34 2 ξ 23 2 + 8 p l 3 2 u 3 ξ 12 ξ 34 2 ξ 23 π 2 a 1 a 2 n 1 n 3 u 2 2 + 8 u 2 Γ 10 ξ 34 ξ 23 π 2 a 2 a 3 n 2 n 4 u 3 2 + Γ 2 Γ 6 ξ 12 2 ξ 34 2 + ( J u 2 ( Γ 1 + K u 3 Γ 2 ) Γ 3 K u 3 Γ 4 ) ( J u 2 ( Γ 5 n 4 2 + K u 3 Γ 6 n 3 2 ) n 2 2 Γ 7 n 4 2 + K u 3 Γ 8 n 3 2 n 1 2 ) + 32 ξ 12 ξ 34 π 4 a 1 a 2 2 a 3 n 1 n 2 n 3 n 4 u 2 u 3 = p l 2 2 p l 3 2 ξ 23 2 ξ 34 2 ξ 12 2 + ( Γ 1 + K u 3 Γ 2 ) ( Γ 5 n 4 2 + K u 3 Γ 6 n 3 2 ) ξ 12 2 + 8 p l 2 2 u 2 ξ 23 ξ 34 ξ 12 2 π 2 a 2 a 3 n 2 n 4 u 3 2 + 8 u 3 Γ 9 ξ 23 ξ 12 π 2 a 1 a 2 n 1 n 3 u 2 2 + Γ 9 Γ 10 ξ 23 2 + ( J u 2 Γ 2 Γ 4 ) ( J u 2 Γ 6 n 2 2 Γ 8 n 1 2 ) ξ 34 2
u j 2 = k 2 n j 2 β 2 = ω j 2 ( j = 1 , 2 , 3 , 4 ) ,
J = J l ' ( u 1 a 1 ) / u 1 J l ( u 1 a 1 ) , K = K l ' ( ω 3 a 2 ) / ω 3 K l ( ω 3 a 2 ) ,
p l 2 = | J l ( u 2 a 2 ) J l ( u 2 a 1 ) Y l ( u 2 a 2 ) Y l ( u 2 a 1 ) | , q l 2 = | J l ( u 2 a 2 ) J l ( u 2 a 1 ) Y l ( u 2 a 2 ) Y l ( u 2 a 1 ) | , r l 2 = | J l ( u 2 a 2 ) J l ( u 2 a 1 ) Y l ( u 2 a 2 ) Y l ( u 2 a 1 ) | , s l 2 = | J l ( u 2 a 2 ) J l ( u 2 a 1 ) Y l ( u 2 a 2 ) Y l ( u 2 a 1 ) | , p l 3 = | J l ( u 3 a 3 ) J l ( u 3 a 2 ) Y l ( u 3 a 3 ) Y l ( u 3 a 2 ) | , q l 3 = | J l ( u 3 a 3 ) J l ( u 3 a 2 ) Y l ( u 3 a 3 ) Y l ( u 3 a 2 ) | , r l 3 = | J l ( u 3 a 3 ) J l ( u 3 a 2 ) Y l ( u 3 a 3 ) Y l ( u 3 a 2 ) | , s l 3 = | J l ( u 3 a 3 ) J l ( u 3 a 2 ) Y l ( u 3 a 3 ) Y l ( u 3 a 2 ) | ,
Γ 1 = u 2 p l 2 s l 3 u 3 r l 2 r l 3 , Γ 2 = u 2 p l 2 q l 3 u 3 r l 2 p l 3 ,       Γ 3 = u 2 q l 2 s l 3 u 3 s l 2 r l 3 , Γ 4 = u 2 q l 2 q l 3 u 3 s l 2 p l 3 , Γ 5 = u 2 p l 2 s l 3 / n 2 2 u 3 r l 2 r l 3 / n 3 2 , Γ 6 = u 2 p l 2 q l 3 / n 2 2 u 3 r l 2 p l 3 / n 3 2 , Γ 7 = u 2 q l 2 s l 3 / n 2 2 u 3 s l 2 r l 3 / n 3 2 ,           Γ 8 = u 2 q l 2 q v 3 / n 2 2 u 3 s l 2 p l 3 / n 3 2 , Γ 9 = ( r l 3 + K u 3 p l 3 ) ( r l 3 / n 4 2 + K u 3 p l 3 / n 4 2 ) , Γ 10 = ( J u 2 p l 2 q l 2 ) ( J u 2 p l 2 / n 2 2 q l 2 / n 1 2 ) ,
ξ 12 2 = σ 0 2 υ 12 4 / a 1 2 n 1 2 n 2 2 u 1 4 u 2 2 , ξ 23 2 = σ 0 2 υ 23 4 / a 2 2 n 2 2 n 3 2 u 2 2 u 3 2 , ξ 34 2 = σ 0 2 υ 34 4 / a 3 2 n 3 2 n 4 2 u 3 2 w 4 4 , υ 12 2 = k 2 ( n 1 2 n 2 2 ) ,       υ 23 2 = k 2 ( n 2 2 n 3 2 ) ,       υ 34 2 = k 2 ( n 3 2 n 4 2 ) , σ 0 2 = β 2 l 2 / k 2 .
n cl ( ν ) = Re ( n cl ( ν ) ) + i   Im ( n cl ( ν ) )
θ = K [ CH 4 ] 1 + K [ CH 4 ]
θ K [ CH 4 ]
Δ λ res ( δ λ res δ n f ) Δ n f ( θ ) = S n Δ n f ( θ )

Metrics