Abstract

Terahertz antenna arrays supporting narrow lattice resonances are proposed as an alternative sensor-on-chip approach to liquid sensing. An array of metallic rectangular antennas fabricated on a polyethylene naphthalate (PEN) substrate is used to demonstrate the sensing of a number of fluids. Good agreement is shown between experiment and simulation with Q-factors of around 20 and a figure-of-merit (FOM) of 3.80 being achieved. Liquid sensing with antenna arrays is simple both in terms of fabrication and setup. The working frequency can be tuned with a suitable choice of substrates and array parameters. The nature of the lattice resonance means that the whole sample is used to provide the conditions required for resonance occurrence, eliminating the need to preferentially locate the sample in small areas of high field concentration. The antenna arrays could also potentially be coupled with a microfluidic system for in situ sensing or used in a reflection setup.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
    [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
    [CrossRef]
  3. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
    [CrossRef]
  4. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
    [CrossRef] [PubMed]
  5. H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).
  6. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
    [CrossRef]
  7. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
    [CrossRef]
  8. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  9. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
    [CrossRef]
  10. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
    [CrossRef]
  11. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–181895 (2009).
    [CrossRef] [PubMed]
  12. N. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [CrossRef] [PubMed]
  13. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
    [CrossRef]
  14. T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
    [CrossRef]
  15. P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007).
    [CrossRef] [PubMed]
  16. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
    [CrossRef]
  17. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
    [CrossRef]
  18. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
  19. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
    [CrossRef]
  20. T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
    [CrossRef]
  21. R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).
  22. R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).
  23. B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  24. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
  25. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [CrossRef] [PubMed]
  26. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
    [CrossRef]
  27. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
    [CrossRef]
  28. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, L115–L121 (2005).
    [CrossRef]
  29. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  30. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [CrossRef] [PubMed]
  31. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
    [CrossRef]
  32. R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
    [CrossRef]
  33. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
    [CrossRef] [PubMed]
  34. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2007).
    [CrossRef]

2014 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).

2011 (2)

2010 (4)

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

2009 (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–181895 (2009).
[CrossRef] [PubMed]

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

2008 (5)

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

2007 (4)

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2007).
[CrossRef]

2006 (1)

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[CrossRef]

2005 (3)

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, L115–L121 (2005).
[CrossRef]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
[CrossRef]

2002 (2)

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

2000 (2)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

1996 (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

1993 (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[CrossRef]

1969 (2)

R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).

R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).

1841 (1)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).

Abbott, D.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Agrafiotis, S.

Al-Naib, I. A. I.

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

Baras, T.

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
[CrossRef]

Barnes, W.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Baumberg, J. J.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

Berrier, A.

Beruete, M.

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Bolivar, P. H.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).

Bosserhoff, A.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

Brucherseifer, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

Buttner, R.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Chen, C. Y.

Chen, H. T.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Chen, Z. C.

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Cole, R. M.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

Collins, R. E.

R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).

R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Falcone, F.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Feng, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Först, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[CrossRef]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18(3), 2797–2807 (2010).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Gu, C.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Han, N.

Hangyo, M.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Highstrete, C.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Hong, M. H.

Ikeda, T.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Jansen, C.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Jepsen, P. U.

Jokerst, N. M.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

Kleine-Ostmann, T.

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
[CrossRef]

Koch, M.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
[CrossRef]

Kuboda, S.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

Kürner, T.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Kurz, H.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

Lee, M.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Lim, C. S.

Mahajan, S.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

Maier, S. A.

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, L115–L121 (2005).
[CrossRef]

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[CrossRef]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Matsushita, A.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Merbold, H.

Mickan, S.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Minami, Y.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Mittleman, D.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Miyamaru, F.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

Møller, U.

Munch, J.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Nagel, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

Navarro-Cía, M.

Ng, B.

O’Hara, J. F.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Palit, S.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Piesiewicz, R.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Singh, R.

Smith, D. R.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Sorolla, M.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Sun, Y.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Tai, N. H.

Taima, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

Takano, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

Takeda, M. W.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

Tani, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Tatsuno, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Taylor, A. J.

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

Un, I. W.

van Doorn, T.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Wang, L.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Wietzke, S.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Xia, X.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Xia, Y.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Yamaguchi, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Yamamoto, K.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

Yang, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Yen, T. J.

Zhang, W.

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

Zhang, X.-C.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Zucker, F. J.

R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).

R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).

Appl. Phys. Lett. (8)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049 (2000).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154 (2002).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk meta-materials operating in the terahertz range,” Appl. Phys. Lett. 96, 081105 (2010).
[CrossRef]

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87, 034105 (2005).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Int. J. Terahertz Sci. Technol. (1)

H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Int. J. Terahertz Sci. Technol. 1(1), 42–50 (2008).

J. Biol. Phys. (1)

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: a numerical study,” J. Biol. Phys. 29(2), 187–194 (2003).
[CrossRef]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[CrossRef]

J. Phys. B (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, L115–L121 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz meta-materials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Microelectron. J. (1)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31(7), 503–514 (2000).
[CrossRef]

Nano Lett. (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227(2010).
[CrossRef] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Nature Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Express (6)

Phys. Rev. B (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).

Phys. Rev. Lett. (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010).
[CrossRef]

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Other (2)

R. E. Collins and F. J. Zucker, Antenna Theory Part 1 (McGraw-Hill Inc., 1969).

R. E. Collins and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill Inc., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical microscope image of THz antenna array. (b) Schematic diagram of THz antenna array with antennas of length l, width w and periods Px and Py in the x and y directions, respectively. (c) Schematic diagram of the fluid chamber assembly used for transmission measurements.

Fig. 2
Fig. 2

(a) Simulated transmission spectrum of the THz antenna array (l = 85 μm, w = 38 μm, Px = 200 μm and Py = 220 μm) embedded in an infinite homogeneous medium of n = 1.7. (0,1) and (1,1) Rayleigh anomalies (blue dashed lines) occur at λ = 374 μm and λ = 251 μm, respectively. The geometrical dipole resonance (red square) and the lattice resonance (green circle) can also be clearly seen. (b, c) Log-scale electric field intensity distributions in the z-normal plane at λ = 281 μm and λ = 389 μm. (d – g) Log-scale electric field intensity distributions in the x-normal plane cutting through the center of the antenna ((d) and (e)) and at 32.5 μm offset from the center in the x-direction ((f) and (g)) at λ = 281 μm and λ = 389 μm. The white line marks out the antenna position. (h) Diagram indicating the coordinate system and the cutting planes of (d, e) and (f, g).

Fig. 3
Fig. 3

(a – d) Experimental (red solid lines) and simulated (black dashed lines) transmission spectra for nitrogen, liquid paraffin, ethanol and methanol, respectively. The lattice resonance is marked by the red arrow. Transmission dips at wavelengths smaller than that of the lattice resonance is due to guided modes that exist in the substrate and superstrate.

Fig. 4
Fig. 4

Lattice resonance shift, Δλres plotted against the refractive index nres at λres . The data is well described by the equation Δλres = 70.73nres – 70.82 (red line) for 50μm thick samples.

Tables (1)

Tables Icon

Table 1 Table of Lattice Resonance Wavelength λres and Corresponding Refractive Index nres for Nitrogen, Liquid Paraffin, Ethanol, and Methanol

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d m = α [ E 0 + m m W m m ( kh ) d m ] ,
d m = a 3 E 0 a 3 / α ( ka ) 3 S ( kh ) ,
FOM = Δ λ res / Δ n Γ ,

Metrics