Abstract

The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm3 laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Wu, A. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  2. W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
    [CrossRef]
  3. R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003).
    [CrossRef]
  4. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
    [CrossRef]
  5. J. D. Berger, Y. W. Zhang, J. D. Grade, H. Lee, S. Hriaya, H. Jerman, A. Fennema, A. Tselikov, and D. Anthon, “Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator,” Ecoc'01: 27th European Conference on Optical Communication, Vols 1–6, 198–199 (2001).
  6. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
    [CrossRef]
  7. M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
    [CrossRef]
  8. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716 (1995).
    [CrossRef] [PubMed]
  9. K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
    [CrossRef]
  10. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [CrossRef]
  11. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
    [CrossRef]
  12. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  13. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [CrossRef] [PubMed]
  14. C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16(21), 16691–16696 (2008).
    [CrossRef] [PubMed]
  15. G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
    [CrossRef]
  16. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [CrossRef] [PubMed]
  17. C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).
  18. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  19. C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
    [CrossRef]
  20. M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
    [CrossRef]
  21. J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A High Signal-to-Noise Ratio, Coherent, Frequency-Domain THz Spectrometer Employed to Characterize Explosive Compounds,” 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Vols 1 and 2, 234–236 (2008).
  22. J. R. Demers, R. T. Logan, and E. R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,” 2007 International Topical Meeting on Microwave Photonics, 92–95 (2007).
  23. J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).
  24. A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
    [CrossRef] [PubMed]
  25. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [CrossRef] [PubMed]
  26. C. C. Aleksoff, “Multi-Wavelength digital holographic metrology - art. no. 63111D,” Opt. Info. Syst. IV 6311, D3111–D3111 (2006).

2010

2008

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16(21), 16691–16696 (2008).
[CrossRef] [PubMed]

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

2007

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[CrossRef] [PubMed]

2006

M. C. Wu, A. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
[CrossRef]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

C. C. Aleksoff, “Multi-Wavelength digital holographic metrology - art. no. 63111D,” Opt. Info. Syst. IV 6311, D3111–D3111 (2006).

2005

C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

2004

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

2003

R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003).
[CrossRef]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[CrossRef] [PubMed]

2002

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

2001

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

1999

1995

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Aleksoff, C. C.

C. C. Aleksoff, “Multi-Wavelength digital holographic metrology - art. no. 63111D,” Opt. Info. Syst. IV 6311, D3111–D3111 (2006).

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Bergeron, N. J.

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

Breede, M.

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Brenner, C.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

Brown, E. R.

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

Charriere, F.

Colomb, T.

Cuche, E.

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Demers, J. R.

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

Deninger, A. J.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Depeursinge, C.

Donhuijsen, K.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Efimov, O. M.

Emery, Y.

Erbert, G.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Ford, J. E.

Friedrich, C. S.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Gerhardt, N. C.

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

Glebov, L. B.

Glebova, L. N.

Gobel, T.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Havermeyer, F.

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16(21), 16691–16696 (2008).
[CrossRef] [PubMed]

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

Hein, G.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Ho, L.

Hochrein, T.

Hoffmann, S.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Hofling, R.

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

Hofmann, M.

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Hofmann, M. R.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Hu, B. B.

Huang, W.

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

Inoue, H.

Jansen, C.

Jordens, C.

Kasseck, C.

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

Kawase, K.

Kinder, T.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Klehr, A.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Kleine-Ostmann, T.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Knobloch, P.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Koberle, M.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Koch, M.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[CrossRef] [PubMed]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Koch, S. W.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kolesik, M.

Krumbholz, N.

Kuhn, J.

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Lison, F.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Liu, A. Q.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

Liu, W.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

Loffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Logan, R. T.

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

Lohmann, A.

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003).
[CrossRef]

Lu, C.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

Marquet, P.

Matus, M.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Mayorga, I. C.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Meissner, P.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Meyn, J. P.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Moloney, J. V.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Montfort, F.

Moser, C.

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16(21), 16691–16696 (2008).
[CrossRef] [PubMed]

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).

Muller-Wirts, T.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Nuss, M. C.

Ogawa, Y.

Peters, O.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Platz, R.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Richardson, K. C.

Roggenbuck, A.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Salhi, M.

Scheller, M.

Schmitz, A.

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

Schönherr, D.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Schroeder, D.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Smirnov, V. I.

Solgaard, A.

Sperling, M.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Stagg, J.

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

Steckman, G.

C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).

Steckman, G. J.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

Struckmeier, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Syms, R. R. A.

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003).
[CrossRef]

Tang, D. Y.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Vieweg, N.

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Watanabe, Y.

Wietzke, S.

Wu, M. C.

Zhang, X. M.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

Zimmermann, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Electron. Lett.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, “Micromirror device controlled tunable diode laser,” Electron. Lett. 43(8), 456–457 (2007).
[CrossRef]

IEE Proc. Scie. Meas. Technol.

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, “Precision MEMS flexure mount for a Littman tunable external cavity laser,” IEE Proc. Scie. Meas. Technol. 151(2), 67–75 (2004).
[CrossRef]

IEEE J. Quantum. Electron.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum. Electron. 41(2), 187–197 (2005).
[CrossRef]

IEEE J. Sel. Top. Quant.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quant. 13(3), 672–678 (2007).
[CrossRef]

C. S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New two-color laser concepts for THz generation,” IEEE J. Sel. Top. Quant. 14(2), 270–276 (2008).
[CrossRef]

J. Lightwave Technol.

J. Microelectromech. Syst.

R. R. A. Syms and A. Lohmann, “MOEMS tuning element for a Littrow external cavity laser,” J. Microelectromech. Syst. 12(6), 921–928 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Opt. Commun.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch, and J. V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207(1-6), 261–271 (2002).
[CrossRef]

Opt. Express

Opt. Info. Syst. IV

C. C. Aleksoff, “Multi-Wavelength digital holographic metrology - art. no. 63111D,” Opt. Info. Syst. IV 6311, D3111–D3111 (2006).

Opt. Lett.

Photon. Spectra

C. Moser and G. Steckman, “Filters to Bragg about,” Photon. Spectra 39, 82 (2005).

Rev. Sci. Instrum.

A. J. Deninger, T. Gobel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Koberle, F. Lison, T. Muller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008).
[CrossRef] [PubMed]

Terahertz for Military and Security Applications Iv

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz - art. no. 694909,” Terahertz for Military and Security Applications Iv 6949, 94909–94909 (2008).

Other

J. R. Demers, R. T. Logan, N. J. Bergeron, and E. R. Brown, “A High Signal-to-Noise Ratio, Coherent, Frequency-Domain THz Spectrometer Employed to Characterize Explosive Compounds,” 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Vols 1 and 2, 234–236 (2008).

J. R. Demers, R. T. Logan, and E. R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,” 2007 International Topical Meeting on Microwave Photonics, 92–95 (2007).

J. D. Berger, Y. W. Zhang, J. D. Grade, H. Lee, S. Hriaya, H. Jerman, A. Fennema, A. Tselikov, and D. Anthon, “Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator,” Ecoc'01: 27th European Conference on Optical Communication, Vols 1–6, 198–199 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Tunable laser cavity implemented with a micromirror array with two discrete wavelengths represented by the red and blue paths reflected from the VHG. LD: laser diode, VHG: volume holographic grating, PBS: polarizing beam-splitter, λ/4: quarter-wave plate

Fig. 2
Fig. 2

Multiplexed reflective volume gratings

Fig. 3
Fig. 3

DLP micromirror array. (a) top “black” image displayed to DLP corresponding to micromirrors oriented at + 12 degrees from the normal: “off” state. (b) top “white” image corresponding to micromirrors oriented at −12 degrees from the normal: “on” state

Fig. 4
Fig. 4

Picture of the assembled DLP wavelength tunable laser and fine wavelength tuning by angle for the 780 nm line.

Fig. 5
Fig. 5

Wavelength switching results of the prototype: (a-d) laser spectrum, displayed image on the DLP (top right), primary and secondary output laser beams (primary = bright spot).

Fig. 6
Fig. 6

Multi-line operation while maintaining single mode for each line

Fig. 7
Fig. 7

Optical power versus current for the 780 nm line at 25°C.

Fig. 8
Fig. 8

Wavelength switching dynamics.

Fig. 9
Fig. 9

Switching between two wavelengths at maximum switch rate of 0.66 kHz.

Fig. 10
Fig. 10

Absolute wavelength measurement of switched wavelengths.

Tables (3)

Tables Icon

Table 1 Functional Parameters of the Fabricated Multiplexed Volume Holographic Grating

Tables Icon

Table 2 Long Term Wavelength Performance of Wavelength Switching Operation.

Tables Icon

Table 3 Summary of Expected Laser Characteristics Based on Different Volume Grating Lengths.

Metrics