Abstract

The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
    [CrossRef]
  2. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  3. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  4. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  5. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]
  6. C. S. Kim, F. N. Farokhrooz, and J. U. Kang, “Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters,” Opt. Lett. 29(14), 1677–1679 (2004).
    [CrossRef] [PubMed]
  7. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
    [CrossRef] [PubMed]
  8. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett. 35(14), 2427–2429 (2010).
    [CrossRef] [PubMed]
  9. N. A. Olsson, “Polarisation-independent configuration optical amplifier,” Electron. Lett. 24(17), 1075–1076 (1988).
    [CrossRef]
  10. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, “Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers,” Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 119–122 (2001).
  11. S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
    [CrossRef]
  12. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

2005 (2)

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2004 (2)

2003 (1)

1997 (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

1988 (1)

N. A. Olsson, “Polarisation-independent configuration optical amplifier,” Electron. Lett. 24(17), 1075–1076 (1988).
[CrossRef]

Adler, D. C.

Biedermann, B. R.

Bouma, B. E.

Cheung, K. K. Y.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Choma, M. A.

Chui, P. C.

Culverhouse, D. O.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

de Boer, J. F.

Eigenwillig, C. M.

Farokhrooz, F. N.

Fujimoto, J.

Fujimoto, J. G.

Hsu, K.

Huber, R.

Izatt, J. A.

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Jeong, J. M.

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Kang, J. U.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, B. Y.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C. S.

Kim, S.

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, J. H.

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Lee, K.

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Lee, S. B.

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Li, Q.

Nakazaki, Y.

Oh, W. Y.

Olsson, N. A.

N. A. Olsson, “Polarisation-independent configuration optical amplifier,” Electron. Lett. 24(17), 1075–1076 (1988).
[CrossRef]

Palte, G.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Richardson, D. J.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

Sarunic, M. V.

Shishkov, M.

Taira, K.

Tearney, G. J.

Vakoc, B. J.

Wojtkowski, M.

Wong, K. K. Y.

Yamashita, S.

Yang, C.

Yang, S.

Yun, S. H.

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

Zhou, Y.

Electron. Lett. (1)

N. A. Olsson, “Polarisation-independent configuration optical amplifier,” Electron. Lett. 24(17), 1075–1076 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intracavity acoustooptic tunable filter,” IEEE J. Quantum Electron. 3(4), 1087–1096 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Kim, K. Lee, J. H. Lee, J. M. Jeong, and S. B. Lee, “Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier,” Jpn. J. Appl. Phys. 48(6), 062402 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Other (1)

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, “Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers,” Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 119–122 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Set up of the wavelength-swept AML laser based on RSOA.

Fig. 2
Fig. 2

(a) The time trace of laser pulse and (b) The static output spectra of the wavelength-swept AML laser.

Fig. 3
Fig. 3

(a) The linewidths of the static AML laser (b) the bandwidths of wavelength-swept AML laser.

Fig. 4
Fig. 4

(a) the OSA peak-hold mode spectra and (b) the time domain tracing of the wavelength-swept AML laser output.

Fig. 5
Fig. 5

Reflected signal of wavelength-swept AML laser from three FBGs array through a three-port circulator at the sweeping rate of 1, 5 and 20 kHz.

Fig. 6
Fig. 6

(a) The balanced interference signals from the interferometer at an 1, 10, 100 and 500 kHz (b) Point spread functions measured at various path lengths. (c) OCT image of three cover glasses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = λ 0 S Δ f m
S = n 2 L c 2 D N

Metrics