Abstract

This paper has experimentally demonstrated and analyzed the performance of 2.5-Gb/s × 3-channel upstream transmission in electrical code divided multiplexing-orthogonal frequency division multiplexing access (ECDM-OFDM) passive optical network (PON). The colorless upstream link can be realized in ECDM-OFDM-PON. The experimental results show that the performance degradation due to optical beating interference (OBI) noise can be well suppressed in this network when the three channels adopt the same upstream wavelength. Compared with the WDM-OFDM-PON upstream signals without ECDM, the error floor shows about three orders of magnitude improvement due to the code gain when the same wavelength is used for all upstream signals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper.Tu.3.B.1, pp. 1–5.
  2. M. Dueser, “Optical network architectures,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMN1.
  3. M. Cvijetic, “Advanced Technologies for Next-Generation Fiber Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWY1.
  4. G. Chang, Z. Jia, J. Yu, A. Chowdhury, T. Wang, and G. Ellinas, “Super Broadband Optical Wireless Access Technologies,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD1.
  5. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
    [CrossRef] [PubMed]
  6. Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
    [CrossRef]
  7. J. G. Lin Chen, J. G. Yu, J. Shuangchun Wen, Z. Lu, M. Dong, Huang, and G. K. Chang, “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
    [CrossRef]
  8. W. Wei, C. Wang, J. Yu, N. Cvijetic, and T. Wang, “Optical orthogonal frequency division multiple access networking for the future internet,” J. Opt. Commun. Netw. 1(2), A236–A246 (2009).
    [CrossRef]
  9. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [CrossRef]
  10. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
    [CrossRef] [PubMed]
  11. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  12. C. W. Chow, G. Talli, A. D. Ellis, and P. D. Townsend, “Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying,” Opt. Express 16(3), 1860–1866 (2008).
    [CrossRef] [PubMed]
  13. D. Qian, J. Hu, P. Ji, T. Wang, and M. Cvijetic, “10-Gb/s OFDMA-PON for Delivery of Heterogeneous Services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWH4.
  14. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “44-Gb/s/λ Upstream OFDMA-PON Transmission with Polarization-Insensitive Source-Free ONUs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuO2.
  15. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  16. L. Zhang, X. Xin, B. Liu, J. Yu, and Q. Zhang, “A novel ECDM-OFDM-PON architecture for next-generation optical access network,” Opt. Express 18(17), 18347–18353 (2010).
    [CrossRef] [PubMed]
  17. A. W. Lam and S. Tantaratana, Theory and Application of Spread-Spectrum Systems (IEEE, Piscataway, NJ, 1994).
  18. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, New York, 1997).

2010 (5)

2009 (2)

2008 (3)

2006 (1)

Bao, H.

Chang, G. K.

Chi, S.

Chow, C. W.

Chow, C.-W.

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

W. Wei, C. Wang, J. Yu, N. Cvijetic, and T. Wang, “Optical orthogonal frequency division multiple access networking for the future internet,” J. Opt. Commun. Netw. 1(2), A236–A246 (2009).
[CrossRef]

Dong, M.

Ellis, A. D.

Giddings, R. P.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Huang,

Hugues-Salas, E.

Jin, X. Q.

Lane, P. M.

Lin, Y.-M.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

Lin Chen, J. G.

Liu, B.

Lu, Z.

Mansoor, S.

Pan, C.-L.

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Sánchez, C.

Shieh, W.

Shih, F.-Y.

Shore, K. A.

Shuangchun Wen, J.

Talli, G.

Tang, J. M.

Tang, Y.

Tien, P.-L.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

Townsend, P. D.

Wang, C.

Wang, C.-H.

Wang, T.

Wei, J. L.

Wei, W.

Xin, X.

Yeh, C.-H.

Yu, J.

Yu, J. G.

Zhang, L.

Zhang, Q.

Zheng, X.

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (6)

Other (8)

D. Qian, J. Hu, P. Ji, T. Wang, and M. Cvijetic, “10-Gb/s OFDMA-PON for Delivery of Heterogeneous Services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWH4.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “44-Gb/s/λ Upstream OFDMA-PON Transmission with Polarization-Insensitive Source-Free ONUs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuO2.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper.Tu.3.B.1, pp. 1–5.

M. Dueser, “Optical network architectures,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMN1.

M. Cvijetic, “Advanced Technologies for Next-Generation Fiber Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWY1.

G. Chang, Z. Jia, J. Yu, A. Chowdhury, T. Wang, and G. Ellinas, “Super Broadband Optical Wireless Access Technologies,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD1.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, New York, 1997).

A. W. Lam and S. Tantaratana, Theory and Application of Spread-Spectrum Systems (IEEE, Piscataway, NJ, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A basic configuration of ECDM-OFDM-PON (down: downstream; up: upstream).

Fig. 2
Fig. 2

The experimental setup of ECDM-OFDM-PON (IFFT: inverse Fourier transform; P/S: parallel to serial).

Fig. 3
Fig. 3

BER curves of WDM-OFDM-PON upstream signals with and without ECDM (w/o: without, w/: with).

Fig. 4
Fig. 4

BER curves of WDM-OFDM-PON upstream signal with different numbers of ONUs and channel space.

Fig. 5
Fig. 5

Two types of multiplexing for ONUs. (a) case-a: all subcarriers assigned to every ONU; (b) case-b: part of subcarriers assigned to every ONU.

Fig. 6
Fig. 6

The BER curves and constellation of OFDM upstream signals with CDM coding.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = k = 1 N [ u ( k ) w m + j v ( k ) w m ] exp ( j 2 π f k t ) , f k = ( k 1 ) / T s
C o v ( w m , w n ) = { 0 , m n N , m = n
E ( t ) = exp ( j 2 π f t ) [ 1 + γ s ( t ) ]
I ( t ) = | E 1 ( t ) + E 2 ( t ) | = | [ 1 + γ 1 s 1 ( t ) ] e j 2 π f 1 t + [ 1 + γ 2 s 2 ( t ) ] e j 2 π f 2 t |
I ( t ) = γ [ s 1 ( t ) + s 2 ( t ) ] + Re { exp [ j 2 π ( f 1 f 2 ) t ] } 1 + γ s 1 ( t ) 1 + γ s 2 ( t )
s 1 ' ( t ) = 0 T s I ( t ) w 1 d t = 0 T s γ [ s 1 ( t ) + s 2 ( t ) ] w 1 d t s i g n a l + 0 T s cos [ 2 π ( f 1 f 2 ) t ] 1 + γ s 1 ( t ) 1 + γ s 2 ( t ) w 1 d t O B I = 0 T s γ k = 1 N b 1 k exp ( j 2 π f 1 t ) w 1 w 1 d t + 0 T s γ k = 1 N b 2 k exp ( j 2 π f 2 t ) w 2 w 1 d t + n O B I
N b e a t γ 2 + 2 G c B O F D M 2
B O F D M = 2 T s + N s c 1 t s
Q = 1 N O N U γ 10 log N 2 + γ 2

Metrics