Abstract

We present a Photonic Spectral Processor (PSP) that provides both fine spectral resolution and broad bandwidth support by dispersing light over two-dimensional space using the crossed-grating approach. The PSP uses a hybrid guided wave/free-space optics arrangement, where a waveguide grating router implemented in silica waveguides disperses the light in one dimension with a 100 GHz FSR and a bulk 1200 gr/mm diffraction grating disperses the light along the second (crossed) dimension. The diffracted light is focused by a lens onto a liquid-crystal on silicon, two-dimensional, phase-only, spatial light modulator, which we use to prescribe phase and amplitude to the signal’s spectral components. With the 2-D PSP arrangement we are able to address frequency components at 0.2 GHz/column with an optical resolution of 3.3 GHz covering 40 C-band channels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
    [CrossRef]
  2. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
    [CrossRef]
  3. D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
    [CrossRef]
  4. S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
    [CrossRef]
  5. M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
    [CrossRef]
  6. C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
    [CrossRef]
  7. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
    [CrossRef]
  8. D. Sinefeld and D. M. Marom, “Colorless photonic spectral processor using hybrid guided-wave/free-space optics arrangement and LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB4.
  9. D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett. 22(7), 510–512 (2010).
    [CrossRef]
  10. K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.
  11. K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
    [CrossRef]
  12. D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, “All-channel tunable optical dispersion compensator based on linear translation of a waveguide grating router,” Opt. Lett. 36(8), 1410–1412 (2011).
    [CrossRef] [PubMed]
  13. D. Sinefeld and D. M. Marom, “Spectral processor implemented with hybrid free-space and guided-wave optics and active LCoS modulator,” in Proceedings of IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 380–383 (2008).
  14. K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
    [CrossRef] [PubMed]
  15. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007).
    [CrossRef]
  16. V. R. Supradeepa, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
    [CrossRef] [PubMed]
  17. D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.
  18. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using combination of arrayed-waveguide and bulk gratings,” in Optical Fiber Communication Conference and Exposition, (Optical Society of America, 2010), paper OMT7.
  19. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).
  20. C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A signal processing approach (Wiley-Interscience, 1999).
  21. J. Leuthold, D. Marom, S. Cabot, J. Jaques, R. Ryf, and C. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
    [CrossRef]
  22. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010).
    [CrossRef]
  23. H. Schenk, H. Gruger, F. Zimmer, W. Scherf, and A. Kenda, “Optical MEMS for advanced spectrometers,” in Proceedings of IEEE/LEOS Conf. on Optical MEMS, 117–118 (2005).

2011 (1)

2010 (4)

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010).
[CrossRef]

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett. 22(7), 510–512 (2010).
[CrossRef]

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

2009 (2)

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (2)

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

2004 (3)

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
[CrossRef]

J. Leuthold, D. Marom, S. Cabot, J. Jaques, R. Ryf, and C. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
[CrossRef]

1997 (1)

M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

Abakoumov, D.

Aksyuk, V. A.

Alic, N.

Basavanhally, N. R.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Baxter, G.

Ben-Ezra, S.

Blum, R.

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

Bolger, J. A.

Bonk, R.

Brenot, R.

Buhl, L. L.

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

Bulthuis, H.

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

Busch, P.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Cabot, S.

Cappuzzo, M. A.

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

Chan, T. K.

Chandrasekhar, S.

Chen, E. Y.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

Doerr, C. R.

Duan, G.-H.

Eggleton, B. J.

Ford, J. E.

Freude, W.

Frisken, S.

Giles, C.

Gomez, L. T.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

Greywall, D. S.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Haueis, M.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Huang, C. B.

Ishii, M.

Itoh, M.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

Jaques, J.

Jiang, R.

Karp, J.

Ko, L.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Leaird, D. E.

Lelarge, F.

Leuthold, J.

Li, J.

Lopez, D. O.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
[CrossRef]

Low, Y. L.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Marculescu, A.

Marki, C. F.

Marom, D.

Marom, D. M.

Masuda, H.

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

Mino, S.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

Mori, K.

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

Neilson, D. T.

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
[CrossRef]

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Ono, H.

Ooba, N.

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

Pai, C. S.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Pardo, F.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
[CrossRef]

Poole, S.

Prybyla, J.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Radic, S.

Ramsey, D. A.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Roelens, M. A. F.

Ryf, R.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

J. Leuthold, D. Marom, S. Cabot, J. Jaques, R. Ryf, and C. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
[CrossRef]

D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-based channelized dispersion compensator with flat passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
[CrossRef]

Sakamoto, T.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

Scotti, R.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Seno, K.

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

Shirasaki, M.

M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

Simon, M. E.

Sinefeld, D.

D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, “All-channel tunable optical dispersion compensator based on linear translation of a waveguide grating router,” Opt. Lett. 36(8), 1410–1412 (2011).
[CrossRef] [PubMed]

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett. 22(7), 510–512 (2010).
[CrossRef]

Sohma, S.

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

Supradeepa, V. R.

Suzuki, K.

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

Sygletos, S.

Takada, A.

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

Tang, H.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Vallaitis, T.

Vorreau, P.

Watanabe, K.

K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18(18), 18565–18579 (2010).
[CrossRef] [PubMed]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

Watanabe, T.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

Weiner, A. M.

Weld, J. D.

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

Wong-Foy, A.

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. T. Neilson, H. Tang, D. S. Greywall, N. R. Basavanhally, L. Ko, D. A. Ramsey, J. D. Weld, Y. L. Low, F. Pardo, D. O. Lopez, P. Busch, J. Prybyla, M. Haueis, C. S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 563–569 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. Sohma, K. Mori, H. Masuda, A. Takada, K. Seno, K. Suzuki, and N. Ooba, “Flexible chromatic dispersion compensation over entire L-band for over 40-Gb/s WDM transparent networks using multichannel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett. 21(17), 1271–1273 (2009).
[CrossRef]

M. Shirasaki, “Chromatic dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and H. Bulthuis, “Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens,” IEEE Photon. Technol. Lett. 18(11), 1222–1224 (2006).
[CrossRef]

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, “Tunable optical dispersion compensator consisting of simple optics with arrayed waveguide grating and flat mirror,” IEEE Photon. Technol. Lett. 21(22), 1701–1703 (2009).
[CrossRef]

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett. 22(7), 510–512 (2010).
[CrossRef]

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating,” IEEE Photon. Technol. Lett. 22(22), 1659–1661 (2010).

J. Lightwave Technol. (6)

Opt. Express (2)

Opt. Lett. (1)

Other (7)

C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A signal processing approach (Wiley-Interscience, 1999).

H. Schenk, H. Gruger, F. Zimmer, W. Scherf, and A. Kenda, “Optical MEMS for advanced spectrometers,” in Proceedings of IEEE/LEOS Conf. on Optical MEMS, 117–118 (2005).

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.

D. Sinefeld and D. M. Marom, “Spectral processor implemented with hybrid free-space and guided-wave optics and active LCoS modulator,” in Proceedings of IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 380–383 (2008).

D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-wavelength channel-by-channel tunable optical dispersion compensator using combination of arrayed-waveguide and bulk gratings,” in Optical Fiber Communication Conference and Exposition, (Optical Society of America, 2010), paper OMT7.

D. Sinefeld and D. M. Marom, “Colorless photonic spectral processor using hybrid guided-wave/free-space optics arrangement and LCoS modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of the two-dimensional photonic spectral processor, capable of imparting independent spectral amplitude and phase to each WDM channel with the use of a LCoS modulator array. Crossed gratings (WGR and bulk) disperse the spectrum across the two-dimensional LCoS array, enabling high resolution access to the spectral components of each channel.

Fig. 2
Fig. 2

The impact of applying horizontal curved phase along the channels in order to eliminate the losses caused by the finite separation between the WGR output facet and the bulk grating. (a) PSP output before equalization. (b) The horizontal quadratic phase that was added in order to achieve channel equalization. (c) PSP after equalization. In the plot 40 WDM channels are shown. This was achieved by moving the SLM along the spectral plane, and stitching the overlapping results from two SLM locations.

Fig. 3
Fig. 3

Finding different wavelength positions with a 0-π step phase technique: (a-c) - Scanning the SLM with a phase step along the WGR direction results in the vertical position and size of the spot at specific wavelengths. The phase step is applied on top of the curved phase in order to reduce losses. The beam width (18 pixels) determines the spectral resolution of the system. (d-f) – The same procedure when the phase step is applied in the bulk grating direction. The result determines the size of each WDM channels on the SLM, where the green line mark 0 dB level. (g) Different wavelength locations on the SLM. The WGR provides high resolution on narrow FSR. The bulk grating separates the WGR diffraction orders. Individual channels are fully resolved on two-dimensional space. The black lines mark the borders of a specific WDM channel while the black ellipse denotes the spot size for a specific wavelength on this channel as it appears on the SLM.

Fig. 4
Fig. 4

Demonstration of channel selection with the 2D PSP. (Left) - The phase modulations as written on the SLM in the case of random selection of 15 WDM channels. Tilted phase was added on top of the curved equalization phase to attenuate channels. (Right) – Results of random selection of 15 WDM channels. A dynamic range of 20 dB is shown, limited by insufficient separation of WGR diffraction orders (or adjacent WDM channels).

Fig. 5
Fig. 5

Example of phase manipulation for 15 channels. (a-b) group delay slopes applied to each channel are equivalent to different CD compensation values. (c) The relevant phase pattern that was written on the SLM, consisting of varying quadratic phases. (d-e) Different group delay values applied to the selected 15 channels. (f) The relevant phase pattern that was written on the SLM, consisting of varying linear slopes.

Fig. 6
Fig. 6

The performance of the two-dimensional PSP when used as a TODC and as a retimer. (a) TODC performance: theoretical (Blue line) and measured (Yellow squares) CD values and bandwidth (Green) versus curvature. As the phase curvature values are larger, narrowing becomes dominant and the bandwidth is reduced down to 23 GHz FWHM for CD values of ± 750 ps/nm. (b) retimer performance: theoretical (Blue line) and measured (Yellow squares) GD values and loss (Green) versus slope angle measured in milliradians. As the phase slope becomes larger, the GD increases. However, large slopes results in high coupling losses.

Fig. 7
Fig. 7

Demonstration of inband manipulations: (a) spectral carving across the channel bandwidth for four contiguous WDM channels: (i) spectral flattening (ii) without modulation, (iii) spectrum carved to two sub-bands, (iv) spectrum carved to three sub-bands. (b) Example of half-channel group delay manipulation for 3 channels. A time split of 50 psec is obtained (c) The applied phase pattern on the SLM for the 3 half slopes case.

Fig. 8
Fig. 8

Layout of a potential polarization insensitive PSP solution based on two PLC aligned together before the bulk grating. A polarizing beam splitter is used to separate the two incoming polarizations and a polarization rotator is added to ensure that both polarizations are aligned after the WGR output.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ θ s p o t = 2 λ π w 0 = 2 λ π f c y l N . A . W G
Δ ν F S R ( d θ d ν ) B G Δ θ s p o t
| ( d θ d ν ) B G | = λ 2 c ( d θ d λ ) B G = λ 2 c d cos ( θ )
d cos ( θ ) π λ f c y l N . A . W G Δ ν F S R 2 c
1 R = Δ z f 2
C D 2 π c λ 2 d 2 ϕ ( ω ) d ω 2 = λ 0 2 2 π c 0 d 2 ϕ ( x ) d x 2 ( d x d λ ) 2 = λ 0 c 0 1 R ( d x d λ ) 2
τ G D d ϕ ( ω ) d ω = d ϕ ( x ) d x d x d λ d λ d ω = λ 0 c 0 θ ( d x d λ )

Metrics