Abstract

In this paper, a novel method for extracting an RF pilot carrier signal in the coherent receiver is presented. The RF carrier is used to mitigate the phase noise influence in n-level PSK and QAM systems. The performance is compared to the use of an (ideal) optically transmitted RF pilot tone. As expected an electronically generated RF carrier provides less efficient phase noise mitigation than the optical RF. However, the electronically generated RF carrier still improves the phase noise tolerance by about one order of magnitude in bit error rate (BER) compared to using no RF pilot tone. It is also found, as a novel study result, that equalization enhanced phase noise - which appears as correlated pure phase noise, amplitude noise and time jitter - cannot be efficiently mitigated by the use of an (optically or electrically generated) RF pilot tone.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
    [CrossRef]
  2. G. P. Agrawal, Fiber-optic communication systems 3rd Edition (John Wiley & Sons, Inc., 2002), Chap. 2.
  3. J. G. Proakis, Digital Communications 5th Edition (McGraw-Hill Companies, Inc., 2008), Chap.10.
  4. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  5. A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J. P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceeding of IEEE European Conference on Optical Communication (Stockholm, Sweden, 2004), paper Th4.1.5.
  6. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  7. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  8. S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.
  9. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper We.2.E.3.
  10. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.
  11. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, E. Yamada, H. Masuda, Y. Miyamoto, and M. Mizoguchi, “Two-stage overlap frequency domain equalization for long-haul optical systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT3.
  12. T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [CrossRef] [PubMed]
  13. W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [CrossRef] [PubMed]
  14. A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.
  15. A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
    [CrossRef] [PubMed]
  16. K.-P. Ho, A. Pak Tao Lau, and W. Shieh, “Equalization-enhanced phase noise induced timing jitter,” Opt. Lett. 36(4), 585–587 (2011).
    [CrossRef] [PubMed]
  17. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.
  18. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  19. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
    [CrossRef] [PubMed]
  20. S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.
  21. T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
    [CrossRef] [PubMed]
  22. E. Vanin and G. Jacobsen, “Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing,” Opt. Express 18(5), 4246–4259 (2010).
    [CrossRef] [PubMed]
  23. G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
    [CrossRef]
  24. M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator” in Proceeding of IEEE European Conference on Optical Communication (Berlin, Germany, 2007), paper 8.3.6.
  25. M. Nakamura, Y. Kamio, and T. Miyazaki, “Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique,” Opt. Express 16(14), 10611–10616 (2008).
    [CrossRef] [PubMed]
  26. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, 20-Gb/s OFDM transmission over 4,160-km SSFM enabled by RF-pilot tone for phase noise compensation”, in Proceeding of Conference on Optical Fiber Communications, (Anaheim, California, 2007), paper PDP 15.
  27. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
    [CrossRef] [PubMed]
  28. G. Jacobsen, Noise in Digital Optical Transmission Systems, (Artech House, Inc., 1994), pp 1 - 387.
  29. www.vpiphotonics.com

2011

2010

2009

2008

2007

2004

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

1985

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Bayvel, P.

Fatadin, I.

Friberg, A. T.

Gavioli, G.

Henry, P. S.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Ho, K. P.

Ho, K.-P.

Igarashi, K.

Jacobsen, G.

Kamio, Y.

Katoh, K.

Kikuchi, K.

Killey, R. I.

Lau, A. P. T.

Li, J.

Miyazaki, T.

Mori, Y.

Nakamura, M.

Pak Tao Lau, A.

Popov, S.

Savory, S. J.

Shen, T. S. R.

Shieh, W.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Vanin, E.

Wang, K.

Xie, C.

Xu, T.

Zhang, C.

Zhang, Y.

Electron. Lett.

G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
[CrossRef]

IEEE J. Quantum Electron.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Opt. Express

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[CrossRef] [PubMed]

W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
[CrossRef] [PubMed]

A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
[CrossRef] [PubMed]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[CrossRef] [PubMed]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[CrossRef] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
[CrossRef] [PubMed]

E. Vanin and G. Jacobsen, “Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing,” Opt. Express 18(5), 4246–4259 (2010).
[CrossRef] [PubMed]

M. Nakamura, Y. Kamio, and T. Miyazaki, “Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique,” Opt. Express 16(14), 10611–10616 (2008).
[CrossRef] [PubMed]

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.

A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.

S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.

S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper We.2.E.3.

M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, E. Yamada, H. Masuda, Y. Miyamoto, and M. Mizoguchi, “Two-stage overlap frequency domain equalization for long-haul optical systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT3.

A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J. P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceeding of IEEE European Conference on Optical Communication (Stockholm, Sweden, 2004), paper Th4.1.5.

G. P. Agrawal, Fiber-optic communication systems 3rd Edition (John Wiley & Sons, Inc., 2002), Chap. 2.

J. G. Proakis, Digital Communications 5th Edition (McGraw-Hill Companies, Inc., 2008), Chap.10.

G. Jacobsen, Noise in Digital Optical Transmission Systems, (Artech House, Inc., 1994), pp 1 - 387.

www.vpiphotonics.com

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, 20-Gb/s OFDM transmission over 4,160-km SSFM enabled by RF-pilot tone for phase noise compensation”, in Proceeding of Conference on Optical Fiber Communications, (Anaheim, California, 2007), paper PDP 15.

M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator” in Proceeding of IEEE European Conference on Optical Communication (Berlin, Germany, 2007), paper 8.3.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of RF pilot carrier extraction and the complex conjugation operation in the general n-level PSK/QAM Rx employing a combination of amplitude and phase modulation. The signal specification in the notation of section 2 (Eq. (1)Eq. (5)) is indicated. Figure abbreviation: HPF - High-Pass Filter.

Fig. 2
Fig. 2

Block diagram for single polarization nPSK/nQAM system using an optical RF pilot tone for phase noise correction (including red system parts) or using an Rx extracted RF pilot tone for phase noise correction (including green system parts). N(t) shows the added optical noise which is used to measure the bit error rate (BER) as a function of optical signal-to-noise ratio (OSNR). Figure abbreviations: Tx – transmitter; PBS – polarizing beam splitter; RF – radio frequency; PRBS – pseudo random bit sequence ; LO – local oscillator; ADC – analogue to digital conversion; CD – chromatic dispersion.

Fig. 3
Fig. 3

BER for single polarization QPSK coherent system of Fig. 2. The transmission distance is 10 km; Tx and LO laser linewidths are 85 MHz and the PRBS leghths are 216-1 and 27-1 as indicated. The HPF filter is of Butterworth type with order 3 (a), 5 (b) and 7 (c). The 3-dB filter bandwidth is 170 MHz in the Rx RF cases (filled blue and green curves). Dashed curves are for 3-dB bandwidths that deviate ± 15 and ± 30 MHz as indicated. Figure abbreviations: OSNR - optical signal-to-noise ratio; Rx – receiver; RF – radio frequency.

Fig. 4
Fig. 4

BER for single polarization QPSK coherent system of Fig. 2. Results are for transmission distances of 200 km, 500 km and 2000 km using an optical RF pilot tone and an RF pilot tone generated in the Rx for phase noise mitigation. Different cases are indicated in the figure. Tx and LO laser linewidths are 44 MHz (200 km), 19 MHz (500 km) and 5 MHz (2000 km). The PRBS length is 216-1. Figure abbreviations: OSNR - optical signal-to-noise ratio; Rx – receiver; RF – radio frequency.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = A ( t ) exp ( j ( φ ( ( t ) + m ( t ) ) )
E R F ( t ) = B exp ( j φ ( t ) )
E s ( t ) E R F * ( t ) = B A ( t ) exp ( j m ( t ) )
E R F ( t ) ¯ = B exp ( j ( φ ( t ) + m ( t ) m ( t ) ¯ ) )
E s ( t ) E R F * ( t ) ¯ = B A ( t ) exp ( j m ( t ) ¯ )
σ E E P N 2 = π λ 2 2 c D L Δ f L O T S 2 π Δ f E E T s
Δ f E f f σ T x 2 + σ L O 2 + σ E E P N 2 2 π T S = Δ f T x + Δ f L O + Δ f E E

Metrics