Abstract

We investigated photodarkening (PD) parameters of Yb/Al-doped silica fibers as a function of the concentration of additional rare earth ions like Tm or Er. It was found that both Tm and Er cause a decrease in Yb inversion followed by a reduction of PD in the case of Er, whereas Tm-codoping with more than 10 mol-ppm can strongly accelerate the process and also increase the PD loss. However, contrary to [1], we conclude that the typical PD behavior of Yb/Al fibers is an intrinsic feature of this fiber type and not caused by trace impurities of Tm (< 1 mol-ppm) unintentionally incorporated by the raw materials during fiber preparation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010).
    [CrossRef] [PubMed]
  2. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [CrossRef] [PubMed]
  3. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [CrossRef] [PubMed]
  4. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [CrossRef] [PubMed]
  5. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
    [CrossRef] [PubMed]
  6. S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
    [CrossRef]
  7. M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
    [CrossRef]
  8. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [CrossRef] [PubMed]
  9. M. Engholm, L. Norin, and D. Aberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [CrossRef] [PubMed]
  10. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
    [CrossRef] [PubMed]
  11. K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V, 71950V–9 (2009).
    [CrossRef]
  12. M. M. Broer, D. M. Krol, and D. J. Digiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
    [CrossRef] [PubMed]
  13. J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
    [CrossRef]
  14. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
    [CrossRef]
  15. A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced methods for analyzation of absorption and fluorescence characteristics of rare-earth-doped silica,” in preparation.
  16. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17(15), 12588–12593 (2009).
    [CrossRef] [PubMed]
  17. www.rp-photonics.com .
  18. F. E. Auzel, “Materials and Devices Using Double-Pumped Phosphors with Energy Transfer,” Proc. IEEE 61(6), 758–786 (1973).
    [CrossRef]
  19. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
    [CrossRef] [PubMed]
  20. D. A. Simpson, W. E. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16(18), 13781–13799 (2008).
    [CrossRef] [PubMed]

2011

2010

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
[CrossRef]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[CrossRef]

1993

1973

F. E. Auzel, “Materials and Devices Using Double-Pumped Phosphors with Energy Transfer,” Proc. IEEE 61(6), 758–786 (1973).
[CrossRef]

Aberg, D.

Auzel, F. E.

F. E. Auzel, “Materials and Devices Using Double-Pumped Phosphors with Energy Transfer,” Proc. IEEE 61(6), 758–786 (1973).
[CrossRef]

Basu, C.

Baxter, G. W.

Bello Doua, R.

Blanc, W.

Boullet, J.

Boyland, A. J.

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
[CrossRef] [PubMed]

Broeng, J.

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V, 71950V–9 (2009).
[CrossRef]

Broer, M. M.

Burov, E.

Cardinal, T.

Carlson, C. G.

Cavani, O.

Chang, J.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
[CrossRef]

Collins, S. F.

Croteau, A.

Digiovanni, D. J.

Dragic, P. D.

Dussardier, B.

Engholm, M.

Ermeneux, S.

Gibbs, W. E.

Gonnet, C.

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[CrossRef]

Guillen, F.

Hoffman, H. J.

Honkanen, S.

Jacquier, B.

Jetschke, S.

Jurdyc, A.-M.

Kirchhof, J.

Koplow, J. P.

Koponen, J. J.

Krol, D. M.

Leich, M.

Manek-Hönninger, I.

Mattsson, K. E.

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V, 71950V–9 (2009).
[CrossRef]

Monnom, G.

Montiel i Ponsoda, J. J.

Nilsson, J.

Norin, L.

Pastouret, A.

Payne, D.

Peng, G.-D.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
[CrossRef]

Peretti, R.

Peterka, P.

Podgorski, M.

Reichel, V.

M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17(15), 12588–12593 (2009).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[CrossRef]

Röpke, U.

Sahu, J. K.

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
[CrossRef] [PubMed]

Salin, F.

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[CrossRef]

Simpson, D. A.

Söderlund, M. J.

Sones, C.

Standish, R. J.

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

Tammela, S. K. T.

Unger, S.

Wang, Q.-P.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
[CrossRef]

Yoo, S.

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
[CrossRef] [PubMed]

Electron. Lett.

S. Yoo, A. J. Boyland, R. J. Standish, and J. K. Sahu, “Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature,” Electron. Lett. 46(3), 233–244 (2010).
[CrossRef]

J. Non-Cryst. Solids

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010).
[CrossRef] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[CrossRef] [PubMed]

M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17(15), 12588–12593 (2009).
[CrossRef] [PubMed]

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
[CrossRef] [PubMed]

M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
[CrossRef] [PubMed]

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
[CrossRef] [PubMed]

D. A. Simpson, W. E. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16(18), 13781–13799 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mater. 28(8-9), 1088–1094 (2006).
[CrossRef]

Proc. IEEE

F. E. Auzel, “Materials and Devices Using Double-Pumped Phosphors with Energy Transfer,” Proc. IEEE 61(6), 758–786 (1973).
[CrossRef]

Proc. SPIE

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V, 71950V–9 (2009).
[CrossRef]

Other

www.rp-photonics.com .

A. Schwuchow, S. Unger, S. Jetschke, and J. Kirchhof, “Advanced methods for analyzation of absorption and fluorescence characteristics of rare-earth-doped silica,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Yb fluorescence intensity (measured at 1075 nm), normalized to the fibers with trace impurities, and (b) lifetime as functions of the concentration of additional rare earth ions.

Fig. 2
Fig. 2

NIR-induced fluorescence spectra of (a) Er-codoped fibers compared to fiber #13, and (b) the low Tm-codoped fiber #6 compared to fiber #3; inset: Tm fluorescence intensity at 473 nm varying with Tm concentration (fibers of Table 1).

Fig. 3
Fig. 3

Photodarkening kinetics of (a) Er- and (b) Tm-codoped fibers in comparison to Yb fibers with only trace impurities (core pumping at 976 nm, Yb inversion 0.46).

Fig. 4
Fig. 4

Photodarkening parameters of the examined fibers (Yb inversion 0.46) as functions of the Tm concentration for core pumping at 976 nm (red squares) and cladding pumping at 915 nm (black squares): (a) PD loss maximum, (b) PD rate constant. The dotted lines represent the effects expected due to the reduction of the Yb inversion with increasing Tm concentration (adapted to the measurement values below 10 mol-ppm Tm2O3). The solid lines are linear fits to the measurement values above 10 mol-ppm Tm2O3.

Tables (2)

Tables Icon

Table 1 Yb Fibers Examined for Influence of Tm on PD (Trace Impurities of Er2O3 < 0.2 mol-ppm)

Tables Icon

Table 2 Yb Fibers Examined for Influence of er on PD (Trace Impurities of Tm2O3 < 0.2 mol-ppm)

Metrics