Abstract

Nanosecond vortex pulses were generated using a stressed, large-mode-area, Yb-doped, fiber amplifier with an off-axis coupling technique for the first time. A pulse energy of 0.83 mJ (corresponding to a peak power of 59 kW) was achieved at a pump power of 25.7 W. The optical-optical efficiency was measured to be 31%. The millijoule nanosecond vortex pulses will be potentially applied to novel material processing, such as metal microneedle fabrication.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
    [CrossRef]
  3. J. Hamazaki, R. Morita, Y. Kobayashi, S. Tanda, and T. Omatsu, “Laser Ablation using a Nanosecond Optical Vortex Pulse,” in Proceedings of IEEE Conference on CLEO/Europe-EQEC (IEEE, 2009), CC1.5 THU.
  4. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7599 .
    [CrossRef] [PubMed]
  5. D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
    [CrossRef]
  6. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
    [CrossRef] [PubMed]
  7. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
    [CrossRef]
  8. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
    [CrossRef] [PubMed]
  9. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,” Opt. Express 15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7616 .
    [CrossRef] [PubMed]
  10. M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
    [CrossRef]
  11. S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
    [CrossRef]
  12. Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17(16), 14362–14366 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14362 .
    [CrossRef] [PubMed]
  13. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-994 .
    [CrossRef] [PubMed]
  14. N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 11(19), 2551–2557 (2002).
    [CrossRef]
  15. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997), Chap. 3.
  16. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
    [CrossRef]
  17. G. B. Jung, K. Kanaya, and T. Omatsu, “Highly efficient phase-conjugation of a 1 µm pico-second Laguerre-Gaussian beam,” Opt. Express 14(6), 2250–2255 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-6-2250 .
    [CrossRef] [PubMed]
  18. C. Ye, M. Gong, P. Yan, Q. Liu, and G. Chen, “Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50W average power,” Opt. Express 14(17), 7604–7609 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7604 .
    [CrossRef] [PubMed]
  19. W. Z. Zhuang, W. C. Huang, P. Y. Chiang, K. W. Su, K. F. Huang, and Y. F. Chen, “Millijoule-level Yb-doped photonic crystal fiber laser passively Q-switched with AlGaInAs quantum wells,” Opt. Express 18(26), 27910–27915 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27910 .
    [CrossRef] [PubMed]
  20. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1055 .
    [CrossRef] [PubMed]
  21. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-13-4916 .
    [CrossRef] [PubMed]
  22. Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
    [CrossRef]

2011

2010

2009

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[CrossRef]

Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17(16), 14362–14366 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14362 .
[CrossRef] [PubMed]

2007

2006

2005

2004

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
[CrossRef]

2003

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

2002

N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 11(19), 2551–2557 (2002).
[CrossRef]

1993

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

1992

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Andrews, D. L.

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
[CrossRef]

Aoki, N.

Babiker, M.

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
[CrossRef]

Bazhenov, V. Yu.

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[CrossRef] [PubMed]

Brilliant, N. A.

N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 11(19), 2551–2557 (2002).
[CrossRef]

Broeng, J.

Chard, S. P.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[CrossRef]

Chen, G.

Chen, Y. F.

Chiang, P. Y.

Chujo, K.

Clarkson, W. A.

Damzen, M. J.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[CrossRef]

Dávila Romero, L. C.

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
[CrossRef]

Deguil-Robin, N.

Eggeling, C.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[CrossRef] [PubMed]

Fujii, M.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Gong, M.

Hamazaki, J.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

Hayashi, Y.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

Hell, S. W.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[CrossRef] [PubMed]

Hirose, T.

Huang, K. F.

Huang, W. C.

Iketaki, Y.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

Ishiuchi, S.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Itoh, M.

Jakobsen, C.

Jung, G. B.

Kanaya, K.

Kitamura, K.

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Koyama, M.

Kurimura, S.

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Liem, A.

Limpert, J.

Liu, Q.

Manek-Hönninger, I.

Mariyenko, I. G.

Miyamoto, K.

Morita, R.

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[CrossRef] [PubMed]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

Nakamura, K.

Nan Ei, Y. U.

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Nolte, S.

Nomura, Y.

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Okida, M.

Omatsu, T.

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-994 .
[CrossRef] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[CrossRef] [PubMed]

Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17(16), 14362–14366 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14362 .
[CrossRef] [PubMed]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,” Opt. Express 15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7616 .
[CrossRef] [PubMed]

G. B. Jung, K. Kanaya, and T. Omatsu, “Highly efficient phase-conjugation of a 1 µm pico-second Laguerre-Gaussian beam,” Opt. Express 14(6), 2250–2255 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-6-2250 .
[CrossRef] [PubMed]

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Petersson, A.

Röser, F.

Sahu, J. K.

Sakai, M.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Salin, F.

Schreiber, T.

Shardlow, P. C.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[CrossRef]

Shen, D. Y.

Soskin, M. S.

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Strohaber, J.

Su, K. W.

Tanaka, Y.

Tünnermann, A.

Uiterwaal, C. J. G. J.

Vasnetsov, M. V.

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Watanabe, T.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yamamoto, K.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

Yan, P.

Yatagai, T.

Ye, C.

Zellmer, H.

Zhuang, W. Z.

Appl. Phys. B

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[CrossRef]

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009).
[CrossRef]

Chem. Phys. Lett.

T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, “Two-Color Far-Field Super-Resolution Microscope using a Doughnut Beam,” Chem. Phys. Lett. 371(5-6), 634–639 (2003).
[CrossRef]

J. Mod. Opt.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

J. Opt. Soc. Am. B

N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 11(19), 2551–2557 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

Y. U. Nan Ei, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Opt. Commun.

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237(1-3), 133–139 (2004).
[CrossRef]

Opt. Express

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1055 .
[CrossRef] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-13-4916 .
[CrossRef] [PubMed]

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7599 .
[CrossRef] [PubMed]

G. B. Jung, K. Kanaya, and T. Omatsu, “Highly efficient phase-conjugation of a 1 µm pico-second Laguerre-Gaussian beam,” Opt. Express 14(6), 2250–2255 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-6-2250 .
[CrossRef] [PubMed]

C. Ye, M. Gong, P. Yan, Q. Liu, and G. Chen, “Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50W average power,” Opt. Express 14(17), 7604–7609 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7604 .
[CrossRef] [PubMed]

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,” Opt. Express 15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7616 .
[CrossRef] [PubMed]

Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17(16), 14362–14366 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14362 .
[CrossRef] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[CrossRef] [PubMed]

W. Z. Zhuang, W. C. Huang, P. Y. Chiang, K. W. Su, K. F. Huang, and Y. F. Chen, “Millijoule-level Yb-doped photonic crystal fiber laser passively Q-switched with AlGaInAs quantum wells,” Opt. Express 18(26), 27910–27915 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27910 .
[CrossRef] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-994 .
[CrossRef] [PubMed]

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[CrossRef] [PubMed]

Other

J. Hamazaki, R. Morita, Y. Kobayashi, S. Tanda, and T. Omatsu, “Laser Ablation using a Nanosecond Optical Vortex Pulse,” in Proceedings of IEEE Conference on CLEO/Europe-EQEC (IEEE, 2009), CC1.5 THU.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of high-energy nanosecond vortex laser system.

Fig. 2
Fig. 2

Vortex and backward output energies as a function of pump power.

Fig. 3
Fig. 3

(a) Spatial profile of vortex output. (b) and (c) Interferograms generated by combining the vortex output with a spherical reference beam.

Fig. 4
Fig. 4

Beam propagation parameter M of vortex output.

Fig. 5
Fig. 5

(a) Temporal evolutions of master laser and amplified vortex output. (b) Lasing spectra of the master laser and the amplified vortex output measured by an optical spectrum analyzer. (c) Lasing spectrum of amplified vortex output measured using a solid etalon. (d) Temporal evolution of output laser at a pump power of 28 W.

Fig. 6
Fig. 6

(a) Vortex output as a function of PRF. Pulse energy of vortex output as a function of PRF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g = g B I L 1 + Δ ν / Δ ν B ,

Metrics