Abstract

Mueller matrix differential decomposition is a novel method for analyzing the polarimetric properties of optical samples. It is performed through an eigenanalysis of the Mueller matrix and the subsequent decomposition of the corresponding differential Mueller matrix into the complete set of 16 differential matrices which characterize depolarizing anisotropic media. The method has been proposed so far only for measurements in transmission configuration. In this work the method is extended to the backward direction. The modifications of the differential matrices according to the reference system are discussed. The method is successfully applied to Mueller matrices measured in reflection and backscattering.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4x4 matrix calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
    [CrossRef]
  2. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36 (in press).
    [PubMed]
  3. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36(10), 1942–1944 (2011).
    [CrossRef] [PubMed]
  4. N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
    [CrossRef]
  5. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  6. N. C. Pistoni, “Simplified approach to the Jones calculus in retracing optical circuits,” Appl. Opt. 34(34), 7870–7876 (1995).
    [CrossRef] [PubMed]
  7. F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
    [CrossRef]
  8. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [CrossRef]
  9. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29(19), 2234–2236 (2004).
    [CrossRef] [PubMed]
  10. M. W. Williams, “Depolarization and cross polarization in ellipsometry of rough surfaces,” Appl. Opt. 25(20), 3616–3622 (1986).
    [CrossRef] [PubMed]
  11. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14(1), 190–202 (2006).
    [CrossRef] [PubMed]

2011

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36(10), 1942–1944 (2011).
[CrossRef] [PubMed]

2009

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

2006

2004

1996

1995

1986

1978

Arce-Diego, J. L.

N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36(10), 1942–1944 (2011).
[CrossRef] [PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36 (in press).
[PubMed]

Azzam, R. M. A.

Boulvert, F.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Buddhiwant, P.

Cariou, J.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Chipman, R. A.

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

Ghosh, N.

Goudail, F.

Gupta, P. K.

Le Brun, G.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Le Jeune, B.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Lu, S. Y.

Manhas, S.

Martin, L.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Morio, J.

Ortega-Quijano, N.

N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36(10), 1942–1944 (2011).
[CrossRef] [PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36 (in press).
[PubMed]

Pistoni, N. C.

Salas-García, I.

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

Singh, J.

Swami, M. K.

Williams, M. W.

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, and J. L. Arce-Diego, “Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis,” Proc. SPIE 7906, 790612, 790612-6 (2011).
[CrossRef]

Other

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Definition of the reference system and the conventions used in this work. The 16 lamellae for the infinitesimal slab of the medium between z and z + ∆z are depicted.

Tables (3)

Tables Icon

Table 1 Experimental Mueller Matrices Considered in this Work

Tables Icon

Table 2 Differential Mueller Matrices Corresponding to the Experimental Matrices Included in Table 1

Tables Icon

Table 3 Accumulated Differential Parameters for the Experimental Mueller Matrices M1, M2, M3, and M4

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d S / d z = m S ,
m = ( d M / d z ) M 1 .
λ m = ln ( λ M ) / z .
m = V m λ V 1 ,
m f = n = 1 16 m n f = [ κ i κ q + κ q ' κ u + κ u ' κ v + κ v ' κ q κ q ' κ i κ i q ' η v + η v ' η u + η u ' κ u κ u ' η v + η v ' κ i κ i u ' η q + η q ' κ v κ v ' η u + η u ' η q + η q ' κ i κ i v ' ] .
m b = n = 1 16 m n b = [ κ i κ q + κ q ' κ u κ u ' κ v + κ v ' κ q κ q ' κ i κ i q ' η v + η v ' η u η u ' κ u + κ u ' η v + η v ' κ i κ i u ' η q + η q ' κ v κ v ' + η u η u ' η q + η q ' κ i κ i v ' ] .

Metrics