Abstract

Nyquist sampling theorem in an image calculation with angular spectrum method restricts a propagation distance and a focal length of a lens. In order to avoid these restrictions, we studied suitable expressions for the image computations depending on their conditions. Additionally, a lateral scale in an observation plane can be magnified freely by using a scaled convolution in each expression.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number

Xiao Yu, Tang Xiahui, Qin Yingxiong, Peng Hao, and Wang Wei
J. Opt. Soc. Am. A 29(11) 2415-2420 (2012)

Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields

Kyoji Matsushima and Tomoyoshi Shimobaba
Opt. Express 17(22) 19662-19673 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  3. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]
  4. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006).
    [Crossref] [PubMed]
  5. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805 (1989).
    [Crossref]
  6. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
    [Crossref]
  7. S. Nishiwaki, “Calculations of optical field by fast Fourier transform analysis,” Appl. Opt. 27(16), 3518–3521 (1988).
    [Crossref] [PubMed]
  8. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15(9), 5631–5640 (2007).
    [Crossref] [PubMed]
  9. M. Nakahara, Geometry, Topology and Physics, 2nd ed. (Taylor & Francis, 2003).

2009 (1)

2007 (1)

2006 (1)

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

1989 (1)

1988 (1)

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

Mansuripur, M.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4-6), 233–245 (1999).
[Crossref]

Matsushima, K.

Muffoletto, R. P.

Nishiwaki, S.

Shen, F.

Shimobaba, T.

Tohline, J. E.

Tyler, J. M.

Wang, A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic model of an aberration-free lens. ξ denotes vector (ξ,η). Details are shown in the text.

Fig. 2
Fig. 2

Airy disc images using the scaled convolutions (λ = 0.6 um, F = 28 um, M = 212-1). (a) Type-II: NA = 0.2, magnification 1x. (b) Type-II: NA = 0.2, magnification 20x. (c) Type-III: NA = 0.9, magnification 1x. (d) Type-III: NA = 0.9, magnification 625x.

Fig. 3
Fig. 3

The intensity distributions in the observation planes far from the focal planes in distance −10 mm using (a) Type-I. (b) Type-II. (c) Type-III. (d) Type-IV, when aberration-free lens having f = 11.456 mm, NA = 0.4, L = 10 mm and D = 9.999 mm in λ = 0.6 um with M = 214.

Fig. 4
Fig. 4

The intensity distributions in the observation planes far from the focal planes in distance 0.1 mm using (a) Type-I. (b) Type-II. (c) Type-III. (d) Type-IV, when aberration-free lens having f = 0.128 mm, NA = 0.9, L = 10 mm and D = 0.779 mm in λ = 0.6 um with M = 214.

Tables (1)

Tables Icon

Table 1 Summary of the suitable formulas and the conditions

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

NA = d / 2 f .
a ( u ) = f 2 ξ ξ + f 2 T ( ξ ) A ( ξ ) exp ( 2 π i u ξ ) d ξ 2 ,
A ( x : z ) = a ( u ) exp ( 2 π i z λ 2 u u ) exp ( 2 π i u x ) d u 2 ,
T ( ξ ) = exp [ 2 π i λ ( ξ ξ + f 2 f ) ] .
z M ( Δ ξ ) 2 λ , f M ( Δ ξ ) 2 λ ,
A ( x : z ) = A ( ξ ) H ( x ξ ) d ξ 2 ,
H ( ξ ) = z exp ( 2 π i f ξ ξ + z 2 ) ξ ξ + z 2 [ 1 2 π ξ ξ + z 2 + i 1 λ ] .
a ( u ) = g ( p ) t ( u p : f ) d p 2 ,
t ( p : f ) = exp [ 2 π i f ( λ 2 p p 1 λ ) ] λ 2 p p [ 1 2 π λ λ 2 p p + i f λ ] ,
g ( p ) = f 2 ξ ξ + f 2 A ( ξ ) exp ( 2 i π p ξ ) d ξ 2 .
A ( x : z ) = a ( u ) [ H ( ξ ) exp ( 2 π i u ξ ) d ξ 2 ] exp ( 2 π i u x ) d u 2 ,
f ( x x 0 ) = F ( u ) exp [ 2 π i u ( x x 0 ) ] d u 2 .
f [ ( m M ) Δ x x 0 ] = p = 0 2 M 1 F p M exp [ 2 π i ( p M ) ( ( m M ) Δ x x 0 ) Δ u ] ,
f [ ( m M ) Δ x / α x 0 ] = exp [ π i γ M ( m m 2 M m + 4 M 2 ) ] p = 0 2 M 1 F p M × exp ( π i γ M ( p p 2 M p ) 2 π i L ( p M ) x 0 ) exp [ π i γ M ( m p ) 2 ] ,
Δ ξ Δ x = γ .
f [ ( m M ) Δ x / γ x 0 ] = exp [ π i γ M ( m m 2 M m + 4 M 2 ) ] × FFT ( IFFT [ F p M exp [ π i γ M ( p p 2 M p ) 2 π i L ( p M ) x 0 ] ] × IFFT [ exp ( π i γ M ( p M ) 2 ) ] ) .
d Ω = sin θ d θ d φ ,
d Ω = 1 cos θ d α d β = cos 3 θ d ξ d η ,
ξ = f tan θ cos φ η = f tan θ sin φ
α = f sin θ cos φ β = f sin θ sin φ .
d α d β = cos 4 θ d ξ d η .
d α d β = cos 2 θ d ξ d η .
d α d β = f 2 ξ ξ + f 2 d ξ d η .
t ( p : f ) = exp [ i k ( ξ ξ + f 2 f ) ] exp ( 2 i π p ξ ) d ξ 2 = exp ( i k f ) k i ξ ξ + f 2 exp [ i k ξ ξ + f 2 ] exp ( 2 i π p ξ ) d ξ 2 .
t ( p : f ) = exp ( i k f ) k d s 2 d ξ 2 1 λ 2 s s × exp [ 2 π i f λ 2 s s ] exp [ 2 i π ( p + s ) ξ ] ,
exp ( i k ξ ξ + f 2 ) ξ ξ + f 2 = i λ 2 s s exp [ 2 π i ( s ξ + f λ 2 s s ) ] d s 2 .
t ( p : f ) = exp [ 2 π i f ( λ 2 p p 1 λ ) ] λ 2 p p [ 1 2 π λ λ 2 p p + i f λ ] .
a ( u ) = exp [ i k ( ξ ξ + f 2 f ) ] A ( ξ ) exp ( 2 π i u ξ ) d ξ 2 = g ( p ) t ( u p : f ) d p 2 ,
g ( p ) = A ( ξ ) exp ( 2 i π p ξ ) d ξ 2 .

Metrics