Abstract

We experimentally prepare bi-photon mixed states in polarization employing an entangled-classical hybrid photon emitter which can properly model solid-state entangled photon sources with uncorrelated background photons. Polarization-uncorrelated photon pairs in totally mixed (TM) states are embodied with classical thermal radiation, while the polarization-entangled ones in a Bell state are generated by conventional parametric down conversion. The bi-photon states generated from the hybrid photon emitter are characterized in terms of a linear entropy–tangle plane, which reveals the formation of two-qubit Werner states. We also propose a direct way for evaluating the Werner states by means of minimal coincidence counts measurements. This simple method can be widely applicable in examining the bi-photon states from solid-state entangled photon sources, in which the polarization-entangled photon pairs have temporal correlation while the background photons in the TM states do not.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  4. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  5. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
    [CrossRef] [PubMed]
  6. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [CrossRef] [PubMed]
  7. P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
    [CrossRef]
  8. H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
    [CrossRef]
  9. Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
    [CrossRef]
  10. Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).
  11. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
    [CrossRef] [PubMed]
  12. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [CrossRef] [PubMed]
  13. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
    [CrossRef]
  14. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
    [CrossRef]
  15. R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
    [CrossRef] [PubMed]
  16. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
    [CrossRef]
  17. M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
    [CrossRef]
  18. G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
    [CrossRef]
  19. Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
    [CrossRef]
  20. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
    [CrossRef] [PubMed]
  21. M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
    [CrossRef] [PubMed]
  22. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [CrossRef] [PubMed]
  23. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [CrossRef] [PubMed]
  24. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [CrossRef] [PubMed]
  25. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  26. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  27. J. S. Bell, Physics (1965), Vol. 1, p. 165.
  28. R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
    [CrossRef] [PubMed]
  29. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  30. S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
    [CrossRef]
  31. C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
    [CrossRef]
  32. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [CrossRef] [PubMed]
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [CrossRef]
  34. B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
    [CrossRef]
  35. R. Loudon, The Quantum Theory of Light , 3rd ed. (Oxford University Press, 2000), Chap. 6.

2010

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

2009

P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

2008

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

2007

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

2006

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

2004

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

2003

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

2002

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

2001

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

2000

M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

R. Loudon, The Quantum Theory of Light , 3rd ed. (Oxford University Press, 2000), Chap. 6.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

1998

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

1996

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

1989

R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef] [PubMed]

1969

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

1965

J. S. Bell, Physics (1965), Vol. 1, p. 165.

1870

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Adachi, S.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Aiello, A.

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

Akazaki, T.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Alivisatosc, P.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Asano, Y.

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Barbieri, M.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

Bechtela, H. A.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Bell, J. S.

J. S. Bell, Physics (1965), Vol. 1, p. 165.

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Bose, S.

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Buratto, S. K.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Caminati, M.

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

Carson, P. J.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).

Cinelli, C.

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

D’Ariano, G. M.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

De Martini, F.

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

Di Nepi, G.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

Dwir, B.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Endo, M.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Faist, J.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Felici, M.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Gallo, P.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Gerionc, D.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Guo, G.-C.

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

Hafenbrak, R.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Hanamura, E.

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Hayashi, Y.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Huang, Y.-F.

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

Hudson, A. J.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

Jo, M.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Kapon, E.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Kimura, S.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Kumano, H.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Kwiat, P. G.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Li, C.-F.

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light , 3rd ed. (Oxford University Press, 2000), Chap. 6.

Lounis, B.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Macchiavello, C.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

Mason, M. D.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Mataloni, P.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Michler, P.

P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
[CrossRef]

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Moernera, W. E.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Mohan, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Munro, W. J.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Muto, S.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Nicoll, C. A.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Perris, R.

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Popescu, S.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Puentes, G.

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

Rastelli, A.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Ritchie, D. A.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Rudra, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Sasakura, H.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Schmidt, O. G.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Sciarrino, F.

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

Secondi, V.

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shields, A. J.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Shor, P. W.

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Stevenson, R. M.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

Suemune, I.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Takayanagi, H.

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Tanaka, K.

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

Ulrich, S. M.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Vedral, V.

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

Voigt, D.

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

Wang, L.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Werner, R. F.

R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef] [PubMed]

White, A. G.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Woerdman, J. P.

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Young, R. J.

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zhang, Y.-S.

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

Appl. Phys. Express

Y. Hayashi, K. Tanaka, T. Akazaki, M. Jo, H. Kumano, and I. Suemune, “Superconductor-based light emitting diode: demonstration of role of cooper pairs in radiative recombination processes,” Appl. Phys. Express 1, 1–3 (2008).
[CrossRef]

Chem. Phys. Lett.

B. Lounis, H. A. Bechtela, D. Gerionc, P. Alivisatosc, and W. E. Moernera, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

J. Nanoelectron. Optoelectron.

H. Kumano, S. Kimura, M. Endo, H. Sasakura, S. Adachi, S. Muto, and I. Suemune, “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” J. Nanoelectron. Optoelectron. 1, 39–51 (2006).
[CrossRef]

Nat. Photonics

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Nature

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[CrossRef] [PubMed]

New J. Phys.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[CrossRef]

Phys. Rev. A

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, and P. Mataloni, “Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states,” Phys. Rev. A 70, 022321 (2004).
[CrossRef]

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef] [PubMed]

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, “Nonseparable Werner states in spontaneous parametric down-conversion,” Phys. Rev. A 73, 032312 (2006).
[CrossRef]

G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, “Entangled mixed-state generation by twin-photon scattering,” Phys. Rev. A 75, 032319 (2007).
[CrossRef]

Y.-S. Zhang, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental preparation of the Werner state via spontaneous parametric down-conversion,” Phys. Rev. A 66, 062315 (2002).
[CrossRef]

Phys. Rev. Lett.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: experimental realization of an entanglement witness,” Phys. Rev. Lett. 91, 227901 (2003).
[CrossRef] [PubMed]

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-inequality violation with a triggered photon-pair source,” Phys. Rev. Lett. 102, 030406 (2009).
[CrossRef] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, “Luminescence of a Cooper pair,” Phys. Rev. Lett. 103, 187001 (2009).

Physics

J. S. Bell, Physics (1965), Vol. 1, p. 165.

Other

R. Loudon, The Quantum Theory of Light , 3rd ed. (Oxford University Press, 2000), Chap. 6.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Qnautum Information (Cambridge University Press, 2000).

P. Michler, Single Semiconductor Quantum Dots (Springer, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A schematic of experimental configurations used in this work. As an polarization-and temporally-uncorrelated photon source, thermal radiation source (Halogen lamp) is employed. The Bell states are generated by the conventional PDC process. This entangled-classical hybrid photon-source forms the bi-photon Werner state, which will appropriately model solid-state polarization-entangled photon sources including temporally uncorrelated background photons.

Fig. 2
Fig. 2

Real (a) and imaginary (b) part of the density matrix for the photon-pair state from the PDC process measured with quantum-state tomography in the bases of |HH〉,|HV〉,|VH〉, and |VV〉. Fidelity to the state ρ Bell = |Ψ〉 〈Ψ| reaches to 0.94. (c) Typical coincidence counts histogram build up by the MCA. Solid curve is a fitted result with a Gaussian function exp[–(τ/σ)2], where τ is the delay time and σ = 0.611 ns. Time window for integrating the histogram was set to 4σ as indicated by an arrow, which gives 2 σ 2 σ exp [ ( τ / σ ) 2 ] d τ / exp [ ( τ / σ ) 2 ] d τ = 0.995 .

Fig. 3
Fig. 3

Real (a) and imaginary (b) part of the measured density matrix for the thermal radiation source. The real diagonal elements are almost the same in amplitude of ∼1/4, and the nondiagonal elements are ignorable. Fidelity to the state totally mixed state ρ T M = 1 4 I I is as high as 0.99.

Fig. 4
Fig. 4

Real (a) and imaginary (b) part of the measured density matrix for the hybrid photon source. Single photon count rates for the thermal and PDC sources are 2,700 and 40,000 s−1, respectively.

Fig. 5
Fig. 5

Photon-pair states in the linear entropy (S L )–Tangle (T) plane calculated from measured density matrix by quantum-state tomography. State (i) corresponds to a photon-pair state from the PDC source. States (ii) – (vi) exhibit photon-pair states originated form the PDC-classical hybrid photon source. Solid line indicates the Werner states, and the gray area corresponds to the states physically not realized. It can be seen that all the experimentally determined photon-pair states (solid circles) are well aligned on the Werner line. Thus, applying the criterion discussed in Sec. 4, it is shown that states (i)–(v) are entangled, and two states (i)–(iii) are also violating the CHSH inequality.

Fig. 6
Fig. 6

Coincidence counts histogram built up in a MCA with HV (closed circles) and HH (open circles) detection polarizations for the bi-photon state (vi) in Fig. 5 and the fit result with a Gaussian function (solid curve). Integration time was 600 sec. The constant level (gray area, labeled as ”TMS”) originates from the thermal radiation source emitting temporally uncorrelated totally mixed polarization state, while the bunching (red area, labeled as ”BS”) from the Bell state generated from the PDC source. A series of measurements (i)–(vi) in Fig. 5 were carried out under fixed single count rate for the PDC source while the intensity of the thermal source was swept, and therefore only the constant level (gray area in this figure) are basically modified in each measurement. Time window of 4σ ∼ 2.4 ns used for integration is shown by an arrow. Contribution of each source to the coincidence histogram is unambiguously defined.

Fig. 7
Fig. 7

Coincidence count as a function of single rate for the (a) PDC and (b) thermal sources. Detectors’ dark counts are subtracted. The PDC source exhibits linear relation to the single rate due to the inherent temporal correlation between photons in a pair (J (Bell)(τ) = ηG(0,σ 2) with G ( 0 , σ 2 ) d τ = 1 ), while the thermal source shows bilinear behavior because of the lack of temporal correlation and detection events of Alice and Bob are mutually independent (J (TM)(τ) = RBob ) (see text). From the slope in the PDC, transmission coefficient for each arm is estimated to be ∼1.0%.

Fig. 8
Fig. 8

Singlet weight p as a function of linear entropy obtained from Eq. (6). Solid line indicates calculated singlet weight as a function of S L for the Werner state. The S L values are common with Fig. 5.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ B e l l = | Ψ Ψ | = ( 0 0 0 0 0 1 / 2 1 / 2 0 0 1 / 2 1 / 2 0 0 0 0 0 ) ,
T = [ max ( λ 1 λ 2 λ 3 λ 4 , 0 ) ] 2 ,
S L = 4 3 ( 1 Tr ρ 2 ) ,
ρ T M = 1 4 I I = ( 1 / 4 0 0 0 0 1 / 4 0 0 0 0 1 / 4 0 0 0 0 1 / 4 )
ρ w = p ρ B e l l + ( 1 p ) ρ T M = p | Ψ Ψ | + 1 p 4 I I ,
p = C ( B e l l ) / ( C ( B e l l ) + 2 C ( T M ) ) .
C ( B e l l / T M ) = t w i n / 2 t w i n / 2 T a c c R A l i c e J ( B e l l / T M ) ( τ ) d τ ,

Metrics