Abstract

This paper demonstrates light-induced tuning of the optical spectrum by a microfiber-knot resonator overlaid with a photoresponsive liquid crystal (LC) mixture containing photosensitive diluents (non-mesogenic azobenzene molecules), a chiral dopant and a nematic LC. The high-quality resonator is made by drawing a single mode fiber to a micro-size diameter and causing the microfiber to self-twist into a knot. A thin layer of a photosensitive mixture was placed on the overlap (knot) area and gentle heating was used to obtain a uniform thin film which coated the fiber’s surface. Upon irradiation with UV light, noticeable changes to the peak resonance wavelengths were observed which we associate with a local change in the refractive index (RI) in the fiber’s tapering area. Repeatable and reversible spectral shifting (0.15 nm) of the resonance wavelength is demonstrated by irradiation with 50 mW/cm2 UV light.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  2. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  3. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
    [CrossRef] [PubMed]
  4. F. Xu, P. Horak, and G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46(4), 570–573 (2007).
    [CrossRef] [PubMed]
  5. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [CrossRef] [PubMed]
  6. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
    [CrossRef]
  7. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
    [CrossRef]
  8. Y. H. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, “Modeling rare-earth doped microfiber ring lasers,” Opt. Express 14(16), 7073–7086 (2006).
    [CrossRef] [PubMed]
  9. G. Vienne, Y. H. Li, L. M. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33(13), 1500–1502 (2008).
    [CrossRef] [PubMed]
  10. X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
    [CrossRef] [PubMed]
  11. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  12. Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
    [CrossRef]
  13. X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
    [CrossRef]
  14. D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
    [CrossRef]
  15. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]
  16. L. Song, W. K. Lee, and X. S. Wang, “AC electric field assisted photo-induced high efficiency orientational diffractive grating in nematic liquid crystals,” Opt. Express 14(6), 2197–2202 (2006).
    [CrossRef] [PubMed]
  17. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13(1), 32–37 (2005).
    [CrossRef] [PubMed]
  18. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [CrossRef] [PubMed]
  19. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
    [CrossRef] [PubMed]
  20. F. L. Zhang, L. Kang, Q. Zhao, J. Zhou, X. P. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009).
    [CrossRef] [PubMed]
  21. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
    [CrossRef] [PubMed]
  22. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
    [CrossRef]
  23. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
    [CrossRef]
  24. V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [PubMed]
  25. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
    [CrossRef] [PubMed]
  26. L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fiber (Springer-Verlag GmbH 2009).
  27. T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32(19), 2777–2779 (2007).
    [CrossRef] [PubMed]
  28. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
    [CrossRef]
  29. S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
    [CrossRef]

2010

2009

2008

2007

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46(4), 570–573 (2007).
[CrossRef] [PubMed]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32(19), 2777–2779 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

1999

S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
[CrossRef]

Arkhipkin, V. G.

Asquini, R.

Assanto, G.

Bai, J.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Bobrovsky, A.

Brambilla, G.

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Chen, Y.

Chen, Z.

Chiappetta, D.

Chu, C.-H.

Dai, H. T.

Dalton, L.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

DiGiovanni, D. J.

Doyle, C.

Dulashko, Y.

Fini, J. M.

Fratalocchi, A.

Fu, J.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Genack, A.

Grelu, P.

Gu, P.

Gunn, C.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

Gunyakov, V. A.

Guo, X.

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
[CrossRef] [PubMed]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Hale, A.

Horak, P.

Hou, C. L.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Hsiao, V. K. S.

Hsu, C.-S.

S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
[CrossRef]

Hu, D. J. J.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Hu, L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

Huang, Y. H.

Jiang, X.

Jiang, X. S.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

Kang, L.

Ko, C. Y.

Lawson, R.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

Lee, W.

Lee, W. K.

Li, Y. H.

G. Vienne, Y. H. Li, L. M. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33(13), 1500–1502 (2008).
[CrossRef] [PubMed]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

Y. H. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, “Modeling rare-earth doped microfiber ring lasers,” Opt. Express 14(16), 7073–7086 (2006).
[CrossRef] [PubMed]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

Li, Z.

Lin, C.-Y.

Lippens, D.

Liu, X.

Liu, Y. J.

Lu, C.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Luo, D.

Maune, B.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

Milner, V.

Myslivets, S. A.

Pan, X.

Parshin, A. M.

Peng, P. C.

Ren, G. B.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Sanford, R. L.

Scherer, A.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Shabanov, V. F.

Shibaev, P. V.

Shum, P.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Shyu, K.-F.

S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
[CrossRef]

Song, L.

Song, Q. H.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Sumetsky, M.

Sun, X.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Sun, X. W.

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Tang, J. Y.

Tong, L.

Tong, L. M.

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. H. Li, L. M. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33(13), 1500–1502 (2008).
[CrossRef] [PubMed]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vienne, G.

Wang, G. H.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Wang, T.-J.

Wang, X. S.

Wu, S. T.

Wu, S.-T.

S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
[CrossRef]

Wu, Y.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Xu, F.

Xu, L.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Yang, D.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, G. G.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

Yu, X.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Zeng, X.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

Zhang, F. L.

Zhang, J.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

Zhao, Q.

Zhao, X. P.

Zhou, J.

Zhou, Y.

Zyryanov, V. Y.

Adv. Funct. Mater.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[CrossRef]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 92(19), 191112 (2008).
[CrossRef]

X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91(7), 073512 (2007).
[CrossRef]

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689–4691 (2003).
[CrossRef]

S.-T. Wu, C.-S. Hsu, and K.-F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74(3), 344–346 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. B. Ren, X. Yu, and G. H. Wang, “Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun. 282(12), 2343–2347 (2009).
[CrossRef]

Opt. Express

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

L. Song, W. K. Lee, and X. S. Wang, “AC electric field assisted photo-induced high efficiency orientational diffractive grating in nematic liquid crystals,” Opt. Express 14(6), 2197–2202 (2006).
[CrossRef] [PubMed]

A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13(1), 32–37 (2005).
[CrossRef] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[CrossRef] [PubMed]

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[CrossRef] [PubMed]

F. L. Zhang, L. Kang, Q. Zhao, J. Zhou, X. P. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009).
[CrossRef] [PubMed]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
[CrossRef] [PubMed]

Y. H. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, “Modeling rare-earth doped microfiber ring lasers,” Opt. Express 14(16), 7073–7086 (2006).
[CrossRef] [PubMed]

M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
[CrossRef] [PubMed]

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
[PubMed]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fiber (Springer-Verlag GmbH 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Microscopic image of the microfiber-knot resonator and (b) photograph of the microfiber-knot under UV light irradiation The diameter of the microfiber was 2.5 μm and the diameter of the ring was 468 μm.

Fig. 2
Fig. 2

(a) Optical spectrum of the fabricated microfiber knot resonator in the 830 μm diameter microfiber-knot resonator and (b) microscopic image of microfiber-knot resonator where a 633 nm He-Ne laser was used as the input light source.

Fig. 3
Fig. 3

(a) All-optical tuning characteristic of the photoresponsive LC-overlaid microfiber-knot resonator (ring diameter of 1100 μm) before (black solid) and after (red dash) 5 mins UV light irradiation; (b) output spectrum of the nematic LC-overlaid microfiber-knot resonator (ring diameter of 850 μm) before (black solid) and under (red dash) 5 mins of UV light irradiation.

Fig. 4
Fig. 4

Plot of the RI change of the photoresponsive LC-overlaid microfiber-knot resonator (ΔnLC ) vs. the RI of photoresponsive LC (nLC ), indicating a different initial RI of the photoresponsive LC corresponding to different values of the RI change of photoresponsive LC-overlaid microfiber-knot resonator.

Fig. 5
Fig. 5

Output spectrum of the photoresponsive LC-overlaid microfiber-knot resonator before (black solid) and after (red dash) 5 mins of UV light irradiation. The spectrum shown as a blue dotted line was recorded 2 hrs after UV irradiation was terminated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 π R n e f f / ( m + 1 / 4 )
Δ λ m = ( m + 1 / 4 ) ( n e f f n L C ) λ m Δ n L C / n e f f

Metrics