Abstract

We fabricated current-injection InGaAs quantum-dot microdisk lasers with benzocyclobutene cladding in this work. The microdisk pedestal diameter is carefully designed to facilitate carrier injection and modal control. With this structure, low threshold current of 0.45 mA is achieved at room temperature from a device of 6.5 μm in diameter with single-mode emission from quantum-dot ground states. The negative characteristic temperature T 0 of threshold current is observed between 80 K and 150 K. The transition temperature from negative T 0 to positive T 0 is 150 K which is higher than that of the edge-emitting lasers fabricated from the same wafer. This phenomenon indicates the lower loss level of our microdisk cavities. These microdisk lasers also show positive T 0 significantly higher than that of the edge-emitting lasers from the same wafer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
    [CrossRef]
  2. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
    [CrossRef]
  3. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [CrossRef] [PubMed]
  4. L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003).
    [CrossRef]
  5. R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
    [CrossRef]
  6. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
    [CrossRef]
  7. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
    [CrossRef]
  8. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  9. A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
    [CrossRef]
  10. D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
    [CrossRef]
  11. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
    [CrossRef]
  12. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
    [CrossRef] [PubMed]
  13. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
    [CrossRef]
  14. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
    [CrossRef]

2009 (1)

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

2007 (2)

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[CrossRef] [PubMed]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

2005 (2)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

2004 (1)

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

2003 (2)

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003).
[CrossRef]

2002 (1)

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

2001 (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

1999 (2)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

1998 (1)

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

1997 (1)

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Akiyama, T.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Alferov, Z. I.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

Baba, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Baets, R.

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Borselli, M.

Chi, J.-Y.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Deppe, D. G.

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Di Cioccio, L.

Dupuis, C.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Egorov, A. Y.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Fedeli, J.-M.

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Fujita, M.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Gayral, B.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Gérard, J. M.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Gordeev, N. Y.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003).
[CrossRef]

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Ide, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Iwamoto, S.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

Johnson, T. J.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

Kim, H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

Kokubun, Y.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Kopèv, P. S.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Kovsh, A. R.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Lagahe, C.

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Ledentsov, N. N.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

Lemaître, A.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Lester, L. F.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Li, H.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Lin, G.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Lin, Y. C.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Malloy, K. J.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Manin, L.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Mao, M.-H.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

Nakaoka, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

O’Brien, J. D.

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Painter, O.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Pelouard, J. L.

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

Regreny, P.

Rojo Romeo, P.

Sakai, A.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Seassal, C.

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Shchekin, O.

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Srinivasan, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

Stintz, A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

Su, L.-C.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Tatebayashi, J.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

Tsatsul\‘nikov, A. F.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Ushigome, R.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Ustinov, V. M.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Wang, J.-S.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Wu, D.-C.

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

Yang, T.

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

Zaitsev, S. V.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Zhang, L.

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003).
[CrossRef]

Zhukov, A. E.

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85(8), 1326–1328 (2004).
[CrossRef]

L. Zhang and E. Hu, “Lasing from InGaAs quantum dots in an injection microdisk,” Appl. Phys. Lett. 82(3), 319–321 (2003).
[CrossRef]

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90(5), 051108 (2007).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Electron. Lett. (1)

T. Yang, O. Shchekin, J. D. O’Brien, and D. G. Deppe, “Room temperature continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” Electron. Lett. 39(23), 1657–1658 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (3)

A. E. Zhukov, V. M. Ustinov, A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul\‘nikov, N. N. Ledentsov, S. V. Zaitsev, N. Y. Gordeev, P. S. Kopèv, and Z. I. Alferov, “negative characteristic temperature of ingaas quantum dot injection laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 6B), 4216–4218 (1997).
[CrossRef]

D.-C. Wu, L.-C. Su, Y. C. Lin, M.-H. Mao, J.-S. Wang, G. Lin, and J.-Y. Chi, “Experiments and simulation of spectrally-resolved static and dynamic properties in quantum dot two-state lasing,” Jpn. J. Appl. Phys. 48(3), 032101 (2009).
[CrossRef]

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6364–6369 (2002).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The cross-section SEM image of a current-injection microdisk laser device. The microdisk diameter is 10.5 μm.

Fig. 2
Fig. 2

The field intensity distribution along the radial direction of a microdisk catity. The diameter of the microdisk is 10.5 μm. The radial numbers (m) of each mode are indicated in the figure.

Fig. 3
Fig. 3

(a) The mode spectrum of a lasing 6.5-μm-diameter microdisk. The WGM linewidth is 0.28 nm. (b) The L-I curve of the 6.5-μm-diameter microdisk, the threshold current is 0.45 mA.

Fig. 4
Fig. 4

(a) The lasing WGM wavelengths of microdisk lasers and (b) their threshold current at various temperatures.

Fig. 5
Fig. 5

The temperature-dependent threshold current of a conventional QD edge-emitting laser fabricated from the same wafer.

Fig. 6
Fig. 6

(a) The temperature-dependent threshold current density with different loss levels. (b) The gain spectra of the QD lasers with different loss levels operating at various temperatures.

Metrics