Abstract

Three-dimensional (3-D) shape measurement using a novel encoded-phase grating is proposed. The projected sinusoidal fringe patterns are designed with wrapped and encoded phase instead of monotonic and unwrapped phase. Phase values of the projected fringes on the surface are evaluated by phase-shift technique. The absolute phase is then restored with reference to the encoded information, which is extracted from the differential of the wrapped phase. To solve the phase errors at some phase-jump areas, Hilbert transform is employed. By embedding the encoded information in the wrapped phase, there is no extra pattern that needs to be projected. The experimental results identify its feasibility and show the possibility to measure the spatially isolated objects. It will be promising to analyze dynamic objects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [CrossRef]
  2. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
    [CrossRef]
  3. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3110 .
    [CrossRef] [PubMed]
  4. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42(3), 245–261 (2004).
    [CrossRef]
  5. T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994).
    [CrossRef]
  6. H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33(20), 4497–4500 (1994).
    [CrossRef] [PubMed]
  7. W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
    [CrossRef]
  8. H. O. Saldner and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36(13), 2770–2775 (1997).
    [CrossRef] [PubMed]
  9. Y. Hao, Y. Zhao, and D. Li, “Multifrequency grating projection profilometry based on the nonlinear excess fraction method,” Appl. Opt. 38(19), 4106–4110 (1999).
    [CrossRef] [PubMed]
  10. E. B. Li, X. Peng, J. Xi, J. F. Chicharo, J. Q. Yao, and D. W. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry,” Opt. Express 13(5), 1561–1569 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1561 .
    [CrossRef] [PubMed]
  11. Y. Li, C. F. Zhao, Y. X. Qian, H. Wang, and H. Zh. Jin, “High-speed and dense three-dimensional surface acquisition using defocused binary patterns for spatially isolated objects,” Opt. Express 18(21), 21628–21635 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21628 .
    [CrossRef] [PubMed]
  12. S. Zhang, “Flexible 3D shape measurement using projector defocusing: extended measurement range,” Opt. Lett. 35(7), 934–936 (2010).
    [CrossRef] [PubMed]
  13. W.-H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express 15(20), 13167–13181 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13167 .
    [CrossRef] [PubMed]
  14. L. Xiong and S. Jia, “Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry,” Opt. Lett. 34(15), 2363–2365 (2009).
    [CrossRef] [PubMed]

2010 (3)

2009 (1)

2007 (1)

2005 (2)

2004 (1)

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42(3), 245–261 (2004).
[CrossRef]

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
[CrossRef]

1994 (2)

H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33(20), 4497–4500 (1994).
[CrossRef] [PubMed]

T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994).
[CrossRef]

Andra, P.

W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Bryanston-Cross, P. J.

T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Chen, W.

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42(3), 245–261 (2004).
[CrossRef]

H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33(20), 4497–4500 (1994).
[CrossRef] [PubMed]

Chicharo, J. F.

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[CrossRef]

Hao, Y.

Huntley, J. M.

Jia, S.

Jin, H. Zh.

Judge, T. R.

T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994).
[CrossRef]

Li, D.

Li, E. B.

Li, Y.

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[CrossRef]

Nadeborn, W.

W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
[CrossRef]

Osten, W.

W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
[CrossRef]

Peng, X.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[CrossRef]

Qian, Y. X.

Saldner, H. O.

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Su, W.-H.

Su, X.

Tan, Y.

Wang, H.

Xi, J.

Xiong, L.

Yao, J. Q.

Zhang, D. W.

Zhang, Q.

Zhang, S.

Zhao, C. F.

Zhao, H.

Zhao, Y.

Appl. Opt. (3)

Opt. Eng. (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (3)

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42(3), 245–261 (2004).
[CrossRef]

T. R. Judge and P. J. Bryanston-Cross, “Review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21(4), 199–239 (1994).
[CrossRef]

W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2–3), 245–260 (1996).
[CrossRef]

Opt. Lett. (2)

Pattern Recognit. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit. 43(8), 2666–2680 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) positive differential fringe, (b) negative differential fringe.

Fig. 2
Fig. 2

Encoded phase and projected fringe patterns. (a) Wrapped phase and code value, (b)-(d) three-frame fringes.

Fig. 3
Fig. 3

Sketch diagram for obtaining the fringe order m.

Fig. 4
Fig. 4

The demonstration of low-pass filtering effect, (a)-(c) 3-frame fringes, (d) the differential of the wrapped phase, (e) phase errors in the proposed method.

Fig. 5
Fig. 5

Demonstration of the phase revision, (a)-(b) cos fringe, (c)-(d)sin fringe, (e) wrapped phase, (f) the result before correction, (g) the result after correction.

Fig. 6
Fig. 6

The schematic of the phase measurement.

Fig. 7
Fig. 7

Difference between the proposed and classical technique, (a)-(e) 3-7 frame phase shift.

Fig. 8
Fig. 8

The measurements of a fan’s blades, (a)-(c) 3-frame fringes, (d) wrapped phase, (e) absolute phase.

Tables (2)

Tables Icon

Table 1 The STD of the Errors vs the Size of Low-Pass Filtering Window

Tables Icon

Table 2 The STD Between the Experimental Results of the Proposed Method and the Classical Phase-Shift Technique

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I n ( x ) = a + b cos ( ϕ w + n N 2 π )
2 k M
{ ϕ a ( x , y ) = ϕ w ( x , y ) + 2 m π     for code value   1 ϕ a ( x , y ) = ϕ w ( x , y ) + 2 m π   for code value   0

Metrics