Abstract

A 16-channel 200GHz arrayed-waveguide grating (AWG) (de)-multiplexer is demonstrated experimentally by utilizing Si3N4 buried optical waveguides, which have 50nm-thick Si3N4 cores and a 15μm-thick SiO2 cladding. The structure with an ultra-thin core layer helps to reduce the scattering due to the sidewall roughness and consequently shows very low loss of about 0.4~0.8dB/m. When using this type of optical waveguide for an AWG (de)multiplexer, there is no problem associated with gap refill using the upper-cladding material even when choosing a small (e.g., 1.0 μm) gap between adjacent arrayed waveguides, which helps to reduce the transition loss between the FPR (free-propagation region) and the arrayed waveguides. Therefore, the demonstrated AWG (de)multiplexer based on the present Si3N4 buried optical waveguides has a low on-chip loss. The fabricated AWG (de)multiplexer is characterized in two wavelength ranges around 1310nm and 1550nm, respectively. It shows that the crosstalk from adjacent and non-adjacent channels are about –30dB, and –40dB, respectively, at the wavelength range of 1310nm. The Si3N4 AWG (de)multiplexer has a temperature dependence of about 0.011nm/°C, which is close to that of a pure SiO2 AWG device.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006).
    [CrossRef]
  2. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
    [CrossRef]
  3. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008).
    [CrossRef]
  4. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [CrossRef] [PubMed]
  5. R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
    [CrossRef]
  6. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
    [CrossRef]
  7. M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
    [CrossRef]
  8. B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).
  9. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
    [CrossRef]
  10. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
    [CrossRef]
  11. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [CrossRef]
  12. D. Dai, X. Fu, Y. Shi, and S. He, “Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors,” Opt. Lett. 35(15), 2594–2596 (2010).
    [CrossRef] [PubMed]
  13. C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).
  14. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
    [CrossRef]
  15. M. M. Spühler, B. J. Offrein, G. Bona, R. Germann, I. Massarek, and D. Erni, “A very short planar silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol. 16(9), 1680–1685 (1998).
    [CrossRef]
  16. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  17. M. C. Tien, J. F. Bauters, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
    [CrossRef] [PubMed]
  18. Y. C. Zhu, F. H. Groen, D. H. P. Maat, Y. S. Oei, J. Romijin, and I. Moerman, “A compact PHASAR with low central channel loss,” in Proc. Euro. Conf. Integrated Optics ’99, Turin, Italy, Apr. 14–16, 219–222 (1999).
  19. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
    [CrossRef] [PubMed]
  20. Y. Sakamaki, S. Kamei, T. Hashimoto, T. Kitoh, and H. Takahashi, “Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method,” J. Lightwave Technol. 27(24), 5710–5715 (2009).
    [CrossRef]

2011 (1)

2010 (5)

2009 (1)

2008 (1)

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008).
[CrossRef]

2007 (1)

2006 (1)

2004 (1)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

2002 (1)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

2000 (1)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

1998 (1)

1997 (1)

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

1996 (1)

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

1994 (1)

R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Adar, R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Barbarin, Y.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Bente, E. A. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Bona, G.

Bowers, J. E.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[CrossRef]

C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).

Cheben, P.

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[CrossRef]

C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[CrossRef]

C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).

Coppinger, F.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

Dai, D.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Delâge, A.

Densmore, A.

Diemeer, M. B. J.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[CrossRef]

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006).
[CrossRef]

C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Erni, D.

Fu, X.

Germann, R.

Hashimoto, T.

He, S.

D. Dai, X. Fu, Y. Shi, and S. He, “Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors,” Opt. Lett. 35(15), 2594–2596 (2010).
[CrossRef] [PubMed]

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

Heck, M. J.

Heck, M. J. R.

Heideman, R. G.

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

Himeno, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Itoh, M.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Jalali, B.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

Janz, S.

Jiao, Y.

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

John, D.

Julian, N.

Kamei, S.

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Kitoh, T.

Kodate, K.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008).
[CrossRef]

Komai, Y.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008).
[CrossRef]

Kooiman, J. R.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Leijtens, X. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Leinse, A.

Louzao, C. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Massarek, I.

Mizrahi, V.

R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Offrein, B. J.

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Okamoto, K.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Post, E.

Ramsamoedj, R.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Sakamaki, Y.

Schmid, J. H.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Serbin, M. R.

R. Adar, M. R. Serbin, and V. Mizrahi, “Lss-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[CrossRef]

Sheng, Z.

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

Shi, Y.

Smit, M. K.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Spiekman, L. H.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

Spühler, M. M.

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Takahashi, H.

Tien, M. C.

Tien, M.-C.

Trinh, P. D.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Waldron, P.

Wang, Z.

Xu, D.-X.

Yang, B.

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

Yang, L.

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

Yegnanarayanan, S.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

Zhu, Y.

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact Arrayed Waveguide Grating Devices Based on Small SU-8 Strip Waveguides,” J. Lightwave Technol. (to appear).

Electron. Lett. (1)

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C. R. Doerr, L. Chen, L. L. Buhl, and Y.-K. Chen, “8-Channel SiO2/Si3N4/Si/Ge CWDM Receiver,” IEEE Photon. Technol. Lett. (to appear).

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[CrossRef]

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9(7), 940–942 (1997).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. A. (1)

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A. 10(4), 044011–044018 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

Y. C. Zhu, F. H. Groen, D. H. P. Maat, Y. S. Oei, J. Romijin, and I. Moerman, “A compact PHASAR with low central channel loss,” in Proc. Euro. Conf. Integrated Optics ’99, Turin, Italy, Apr. 14–16, 219–222 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). The cross section of the present low-loss buried optical waveguide with a 50nm-thick Si3N4 core; (b) the mode profile of the TE-polarized fundamental mode; (c) the mode profile of the TM-polarized fundamental mode.

Fig. 2
Fig. 2

The layout of the designed AWG (de)multiplexer.

Fig. 3
Fig. 3

(a). The measured spectral responses of all the channels in the wavelength range around 1550nm; (b) the response for channel

Fig. 4
Fig. 4

(a). The measured spectral responses of all the channels in the wavelength range around 1310nm; (b) the response for channel #9. The OSA resolution is 0.1nm in the measurement.

Fig. 5
Fig. 5

(a). The spectral response of channel #9 as the temperature varies; (b) the central wavelength of channel #9 as the temperature increases from 10 to 100°C.

Tables (1)

Tables Icon

Table 1 Comparison for AWGs on various platforms.

Metrics