Abstract

An efficient anti-Stokes white broadband emission induced by 976 nm laser diode in lithium ytterbium tetraphosphate (LiYbP4O12) nanocrystals was investigated. The emission occurs at room temperature and atmospheric pressure. Its intensity demonstrates an evident threshold dependence on the temperature and excitation density characteristic to avalanche process. The white emission is accompanied by very efficient photoconductivity characterized by microampere photocurrent which increases with the fourth order of applied incident light power (~P4). We show that this emission is critically dependent on temperature and increases significantly in vacuum. It is concluded that the anti-Stokes white emission is associated with the Yb3+- CT luminescence.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
    [CrossRef]
  2. B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
    [CrossRef]
  3. W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
    [CrossRef]
  4. S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
    [CrossRef] [PubMed]
  5. E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
    [CrossRef]
  6. X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
    [CrossRef]
  7. F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
    [CrossRef]
  8. J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
    [CrossRef] [PubMed]
  9. J. Wang, J. H. Hao, and P. A. Tanner, “Luminous and tunable white-light upconversion for YAG (Yb3Al5O12) and (Yb,Y)2O3 nanopowders,” Opt. Lett. 35(23), 3922–3924 (2010).
    [CrossRef] [PubMed]
  10. W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
    [CrossRef]
  11. L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
    [CrossRef]
  12. R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
    [CrossRef] [PubMed]
  13. S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
    [CrossRef]
  14. M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
    [CrossRef]
  15. L. D. Landau and I. M. Lifshitz, Course of Theoretical Physics, vol.5 (Pergamon Press, 1959).
  16. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” J. Lumin. 12–13, 715–722 (1976).
    [CrossRef]
  17. F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65(1), 45–56 (1995).
    [CrossRef]
  18. T. Miyakawa and D. L. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [CrossRef]
  19. P. G. Klemens and M. Gell, “Thermal conductivity of thermal barrier coatings,” Mater. Sci. Eng. A 245(2), 143–149 (1998).
    [CrossRef]
  20. J. Nakano, “Thermal properties of solid-state laser crystal LiNdP4O12,” J. Appl. Phys. 52(3), 1239–1243 (1981).
    [CrossRef]
  21. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
    [CrossRef]
  22. P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
    [CrossRef]
  23. M. Miah, “One-, two-, and three-photon processes in CdI2 crystal,” Opt. Mater. 25(4), 353–357 (2004).
    [CrossRef]
  24. C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
    [CrossRef]
  25. R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
    [CrossRef]
  26. S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
    [CrossRef]
  27. C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
    [CrossRef] [PubMed]
  28. G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
    [CrossRef]
  29. U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
    [CrossRef]

2011 (4)

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

2010 (5)

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
[CrossRef] [PubMed]

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef] [PubMed]

J. Wang, J. H. Hao, and P. A. Tanner, “Luminous and tunable white-light upconversion for YAG (Yb3Al5O12) and (Yb,Y)2O3 nanopowders,” Opt. Lett. 35(23), 3922–3924 (2010).
[CrossRef] [PubMed]

B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
[CrossRef]

2009 (2)

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

2007 (1)

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

2006 (1)

J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
[CrossRef]

2005 (2)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
[CrossRef]

2004 (2)

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

M. Miah, “One-, two-, and three-photon processes in CdI2 crystal,” Opt. Mater. 25(4), 353–357 (2004).
[CrossRef]

2001 (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

2000 (1)

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

1999 (1)

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[CrossRef]

1998 (1)

P. G. Klemens and M. Gell, “Thermal conductivity of thermal barrier coatings,” Mater. Sci. Eng. A 245(2), 143–149 (1998).
[CrossRef]

1997 (1)

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
[CrossRef]

1995 (1)

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65(1), 45–56 (1995).
[CrossRef]

1981 (1)

J. Nakano, “Thermal properties of solid-state laser crystal LiNdP4O12,” J. Appl. Phys. 52(3), 1239–1243 (1981).
[CrossRef]

1976 (1)

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” J. Lumin. 12–13, 715–722 (1976).
[CrossRef]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Auzel, F.

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65(1), 45–56 (1995).
[CrossRef]

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” J. Lumin. 12–13, 715–722 (1976).
[CrossRef]

Basun, A. A.

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

Bednarkiewicz, A.

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

Bitschnau, B.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Brandt, C.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Calvilla-Quintero, J. M.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
[CrossRef]

Chen, Y.

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65(1), 45–56 (1995).
[CrossRef]

Choi, J.

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Dorenbos, P.

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Fredrich-Thornton, S. T.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Fuchs, E. C.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Gao, W.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Gatterer, K.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Gektin, A.

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

Gell, M.

P. G. Klemens and M. Gell, “Thermal conductivity of thermal barrier coatings,” Mater. Sci. Eng. A 245(2), 143–149 (1998).
[CrossRef]

Gonzalezortega, J. A.

J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
[CrossRef]

Guy, S.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
[CrossRef]

Hao, J. H.

Happek, U.

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

He, H.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Hirata, G. A.

J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
[CrossRef]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Hou, X.

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

Hreniak, D.

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

Hu, Y.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Huber, G.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Jacquier, B.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
[CrossRef]

Jia, T.

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

Joshi, C.

C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
[CrossRef] [PubMed]

Joubert, M. F.

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[CrossRef]

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
[CrossRef]

Ju, H.

B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
[CrossRef]

Kaviany, M. J.

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

Klemens, P. G.

P. G. Klemens and M. Gell, “Thermal conductivity of thermal barrier coatings,” Mater. Sci. Eng. A 245(2), 143–149 (1998).
[CrossRef]

Krebs, J. K.

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

Kumar, K.

C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
[CrossRef] [PubMed]

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

Lahoz, F.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
[CrossRef]

Lin, H.

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

Liu, Y.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Lukowiak, A.

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

Marciniak, L.

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

Martin, I. R.

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
[CrossRef]

Miah, M.

M. Miah, “One-, two-, and three-photon processes in CdI2 crystal,” Opt. Mater. 25(4), 353–357 (2004).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Mühlanger, A.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Nakano, J.

J. Nakano, “Thermal properties of solid-state laser crystal LiNdP4O12,” J. Appl. Phys. 52(3), 1239–1243 (1981).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Paulitsch, A. H.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Pazik, R.

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

Perea, N.

J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
[CrossRef]

Petermann, K.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Peters, R.

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Pidzyrailo, M.

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Rai, A.

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

Rai, S. B.

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
[CrossRef] [PubMed]

Rand, S. C.

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

Raudsepp, M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Raukas, M.

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

Redmond, S.

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

Ruan, X. L.

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

Shalapska, T.

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

Sivakumar, S.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Sommer, C.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Strek, W.

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

Stryganyuk, G.

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Sun, L.

B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
[CrossRef]

Tanner, P. A.

Teng, H.

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

van Veggel, F. C. J. M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Verma, R. K.

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

Voloshinovskii, A.

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Wang, B.

B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
[CrossRef]

Wang, J.

Wenzl, F. P.

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Wiglusz, R.

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

Wiglusz, R. J.

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

Zazubovich, S.

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Zhang, S.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Zhou, S.

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

Zhuang, W.

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Zimmerer, G.

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

Appl. Phys. B (1)

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86(5), 051106 (2005).
[CrossRef]

Inorg. Chem. (1)

R. J. Wiglusz, R. Pazik, A. Lukowiak, and W. Strek, “Synthesis, structure, and optical properties of LiEu(PO3)4 nanoparticles,” Inorg. Chem. 50(4), 1321–1330 (2011).
[CrossRef] [PubMed]

J. Alloy. Comp. (2)

X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, “White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic,” J. Alloy. Comp. 509(6), 2793–2796 (2011).
[CrossRef]

U. Happek, A. A. Basun, J. Choi, J. K. Krebs, and M. Raukas, “Electron transfer processes in rare earth doped insulators,” J. Alloy. Comp. 303-304(1-2), 198–206 (2000).
[CrossRef]

J. Am. Chem. Soc. (2)

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef] [PubMed]

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

S. Redmond, S. C. Rand, X. L. Ruan, and M. J. Kaviany, “Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders,” J. Appl. Phys. 95(8), 4069–4077 (2004).
[CrossRef]

J. Nakano, “Thermal properties of solid-state laser crystal LiNdP4O12,” J. Appl. Phys. 52(3), 1239–1243 (1981).
[CrossRef]

J. Fluoresc. (1)

C. Joshi, K. Kumar, and S. B. Rai, “Intense white luminescence from combustion synthesized Ca12Al14O33:Yb3+/Yb2+ single phase phosphor,” J. Fluoresc. 20(4), 953–959 (2010).
[CrossRef] [PubMed]

J. Lumin. (4)

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[CrossRef]

P. Dorenbos, T. Shalapska, G. Stryganyuk, A. Gektin, and A. Voloshinovskii, “„Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12,” J. Lumin. 131(4), 633–639 (2011).
[CrossRef]

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” J. Lumin. 12–13, 715–722 (1976).
[CrossRef]

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65(1), 45–56 (1995).
[CrossRef]

J. Phys. Condens. Matter (1)

G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, and K. Petermann, “„Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O14 phosphates,” J. Phys. Condens. Matter 19(3), 036202 (2007).
[CrossRef]

J. Rare Earths (1)

W. Gao, Y. Hu, W. Zhuang, S. Zhang, Y. Liu, and H. He, “A novel method for the synthesis of YAG:Ce phosphor,” J. Rare Earths 27(6), 886–890 (2009).
[CrossRef]

Mater. Sci. Eng. A (1)

P. G. Klemens and M. Gell, “Thermal conductivity of thermal barrier coatings,” Mater. Sci. Eng. A 245(2), 143–149 (1998).
[CrossRef]

Mater. Sci. Eng. B (1)

E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Mühlanger, and K. Gatterer, “Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis,” Mater. Sci. Eng. B 156(1-3), 73–78 (2009).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (5)

W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, D. Hreniak, and R. Wiglusz, “„The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals,” Opt. Mater. , doi:.
[CrossRef]

L. Marciniak, W. Strek, A. Bednarkiewicz, A. Lukowiak, and D. Hreniak, “„Bright upconversion emission of Nd3 + in LiLa1-xNdxP4O12 nanocrystalline powders,” Opt. Mater. , doi:.
[CrossRef]

J. A. Gonzalezortega, N. Perea, and G. A. Hirata, “White light emission from Y2SiO5:Ce, Tb films excited by electroluminescence,” Opt. Mater. 29(1), 47–50 (2006).
[CrossRef]

M. F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11(2-3), 181–203 (1999).
[CrossRef]

M. Miah, “One-, two-, and three-photon processes in CdI2 crystal,” Opt. Mater. 25(4), 353–357 (2004).
[CrossRef]

Phys. Rev. B (2)

T. Miyakawa and D. L. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
[CrossRef]

Quantum (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG,” Quantum 37(1), 135–144 (2001).
[CrossRef]

Solid State Commun. (1)

B. Wang, L. Sun, and H. Ju, “Luminescence and energy transfer of white-light emitting CaAl2SiO6:Ce3C, Tb3C Phosphors,” Solid State Commun. 150(31-32), 1460–1462 (2010).
[CrossRef]

Other (1)

L. D. Landau and I. M. Lifshitz, Course of Theoretical Physics, vol.5 (Pergamon Press, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The time evolution of up-conversion emission color (a) and the spectral characteristics (1) of LiYbP4O12 nanocrystalline powder. Figure 1c shows the time increase of white emission. Figure 1d illustrates the temporal changes of blue emission. Figure 1e shows the dependence of the decay time of blue emission on incident power. The spot diameter was 140 μm.

Fig. 2
Fig. 2

The incident laser power impact on intensity of white emission (a), blue emission (b) and white emission at simultaneous two colour excitation- 976 nm LD and 458 nm argon laser (c) of LiYbP4O12 nanocrystalline powder.

Fig. 3
Fig. 3

The effect of excitation power (a, b) at room temperature on the intensity of the anti-Stokes emission of LiYbP4O12 nanocrystalline powders (λexc = 976 nm CW, P = 1.65 W focused with a f = 40mm lens).

Fig. 4
Fig. 4

The impact of ambient pressure on white emission of LiYbP4O12 nanocrystalline powder (a) and the dependence of its intensity on surrounding atmosphere pressure (⋄) (b). For comparison purposes the similar dependences for YbAG (◻), Yb2O3 (O) and (Yb0.3Y0.7)2O3 (Δ) from Wang et al [9] are also presented.

Fig. 5
Fig. 5

Photoconductivity studies of LiYbP4O12 nanocrystalline powders reveal up to 4 orders of resistance variability of photocurrent with 976 nm excitation (a-b). c. Photoresistivity measured for focused (white emission) and unfocused (blue emission) pumping laser beam.

Fig. 6
Fig. 6

Scheme of electronic relaxation leading to IR induced anti-Stokes white emission in LiYbP4O12 nanocrystalline powders. The energy levels scheme is taken from Dorenbos et al. [22].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I A S ( T ) = I 0 · exp [ Δ E · ( α s + ( k T ) 1 ]

Metrics