Abstract

To enhance optical emission in laser-induced breakdown spectroscopy, both a pair of permanent magnets and an aluminum hemispherical cavity (diameter: 11.1 mm) were used simultaneously to magnetically and spatially confine plasmas produced by a KrF excimer laser in air from pure metal and alloyed samples. High enhancement factors of about 22 and 24 in the emission intensity of Co and Cr lines were acquired at a laser fluence of 6.2 J/cm2 using the combined confinement, while enhancement factors of only about 11 and 12 were obtained just with a cavity. The mechanism of enhanced optical emission by combined confinement, including shock wave in the presence of a magnetic field, is discussed. The Si plasmas, however, were not influenced by the presence of magnets as Si is hard to ablate and ionize and hence has less free electrons and positive ions. Images of the laser-induced Cr and Si plasmas show the difference between pure metallic and semiconductor materials in the presence of both a cavity and magnets.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
    [CrossRef]
  2. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).
  3. H. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38(9), 1459–1466 (1999).
    [CrossRef] [PubMed]
  4. J. P. Singh and S. N. Thakur, Laser-Induced breakdown Spectroscopy (Elsevier Science, Oxford, 2007).
  5. Yu. P. Razier, Laser-Induced Discharge Phenomena (Consultants Bureau New York, 1977).
  6. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
    [CrossRef]
  7. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by the laser-induced breakdown spectroscopy techinique,” Appl. Spectrosc. 51(8), 1102–1105 (1997).
    [CrossRef]
  8. T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
    [CrossRef]
  9. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
    [CrossRef]
  10. D. Anglos, V. Zafiropulos, K. Melessanaki, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analyses of 150-year old daguerreotypes,” Appl. Spectrosc. 56(4), 423–432 (2002).
    [CrossRef]
  11. A.W. Miziolect, V. Palleschi and I. Schechter eds., Laser-Induced Breakdown Spectroscopy (LIBS) - Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).
  12. D. A. Cremers and L. J. Radzeimki, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).
  13. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54(12), 1719–1726 (2000).
    [CrossRef]
  14. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, “Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60(1), 65–71 (2006).
    [CrossRef] [PubMed]
  15. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003).
    [CrossRef] [PubMed]
  16. R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
    [CrossRef]
  17. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
    [CrossRef] [PubMed]
  18. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [CrossRef] [PubMed]
  19. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
    [CrossRef]
  20. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
    [CrossRef]
  21. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009).
    [CrossRef]
  22. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [CrossRef]
  23. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
    [CrossRef]
  24. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42(12), 2085–2093 (2003).
    [CrossRef] [PubMed]
  25. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).
  26. V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999).
    [CrossRef]
  27. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1974).
  28. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42(12), 2085–2093 (2003).
    [CrossRef] [PubMed]
  29. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
    [CrossRef]
  30. G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000).
    [CrossRef]

2011

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

2010

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

2009

2007

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

2006

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, “Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60(1), 65–71 (2006).
[CrossRef] [PubMed]

2005

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

2003

2002

D. Anglos, V. Zafiropulos, K. Melessanaki, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analyses of 150-year old daguerreotypes,” Appl. Spectrosc. 56(4), 423–432 (2002).
[CrossRef]

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[CrossRef]

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

2000

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54(12), 1719–1726 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
[CrossRef]

G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000).
[CrossRef]

1999

H. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38(9), 1459–1466 (1999).
[CrossRef] [PubMed]

V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999).
[CrossRef]

1997

1984

Angel, S. M.

Anglos, D.

Arca, G.

Asimellis, G.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Carter, J. C.

Ciucci, A.

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009).
[CrossRef]

Colston, B. W.

Cremers, D. A.

Eland, K. L.

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009).
[CrossRef]

Ferris, M. J.

Gao, Y.

Gebre, T.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Giannoudakos, A.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

Gonzalez, J. J.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Goode, S. R.

Gresalfi, M. J.

Guo, L. B.

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Hamilton, S.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

Han, G.

G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000).
[CrossRef]

Han, Y. X.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

He, X. N.

Hu, W.

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Knight, A. K.

Kompitsas, M.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

Li, C. M.

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Ling, H.

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Loree, T. R.

Lu, Y. F.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Mao, S. S.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Mao, X. L.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Melessanaki, K.

Miller, J. C.

Murray, P. T.

G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000).
[CrossRef]

Navarro-González, R.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

Palleschi, V.

Pant, H. C.

V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999).
[CrossRef]

Pearman, W.

Pender, J.

Phuoc, T. X.

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009).
[CrossRef]

Radziemski, L. J.

Raga, A. C.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

Rai, A. K.

Rai, V. N.

Rastelli, S.

Russo, R. E.

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

Scaffidi, J.

Scherbarth, N. L.

Shen, X. K.

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Shukla, M.

V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999).
[CrossRef]

Singh, J. P.

Sobral, H.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

Stratis, D. N.

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

Tognoni, E.

Villagrán-Muniz, M.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

Wang, H.

White, F. P.

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[CrossRef]

Xie, Z. Q.

Yueh, F. Y.

Zafiropulos, V.

Zeng, X. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Zhang, B. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Zhang, H.

Zhou, Y. S.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[CrossRef]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Appl. Spectrosc.

Fuel

T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81(13), 1761–1765 (2002).
[CrossRef]

J. Anal. At. Spectrom.

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom. 17(9), 1072–1075 (2002).
[CrossRef]

J. Appl. Phys.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88(2), 1184–1186 (2000).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[CrossRef]

Opt. Express

Pramana J. Phys.

V. N. Rai, M. Shukla, and H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52(1), 49–65 (1999).
[CrossRef]

Spectrochimica Acta Part B.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B. 60(7-8), 1132–1139 (2005).
[CrossRef]

Other

L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).

J. P. Singh and S. N. Thakur, Laser-Induced breakdown Spectroscopy (Elsevier Science, Oxford, 2007).

Yu. P. Razier, Laser-Induced Discharge Phenomena (Consultants Bureau New York, 1977).

A.W. Miziolect, V. Palleschi and I. Schechter eds., Laser-Induced Breakdown Spectroscopy (LIBS) - Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).

D. A. Cremers and L. J. Radzeimki, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).

F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1974).

L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experiment setup.

Fig. 2
Fig. 2

Time-integrated spectra from (a) Co and (b) Cr targets with the presence of both a hemispherical cavity and magnets (solid curve), with the cavity only (short dashed curve), and without confinement (short dotted curve) at a laser fluence of 6.2 J/cm2.

Fig. 3
Fig. 3

Emission intensity of (a) Co atomic lines (345.35 nm) and (b) Cr atomic lines (425.44 nm) as a function of time delay, using both a hemispherical cavity and magnets (square dots and solid curve), using the cavity only (circle dots and short dashed curve), and without confinement (triangle dots and short dotted) at a laser fluence of 6.2 J/cm2.

Fig. 4
Fig. 4

(a) Time-integrated spectra from Si targets with the presence of both a hemispherical cavity and magnets (solid curve), with the cavity only (short dashed curve), and without confinement (short dotted curve) at a laser fluence of 6.2J/cm2. (b) Emission intensity of Si I atomic lines (288.16 nm) as a function of time delay, using both a hemispherical cavity and magnets (square dots and solid curve), using the cavity only (circle dots and short dashed curve), and without confinement (triangle dots and short dotted) at a laser fluence of 6.2 J/cm2.

Fig. 5
Fig. 5

Fast images of laser-induced Cr and Si plasmas using both a hemispherical cavity and magnets (first and fourth row), using the cavity only (second and fifth row), and without confinement (third and sixth row), respectively, at a laser fluence of 6.2 J/cm2.

Fig. 6
Fig. 6

Emission intensity of (a) Cu atomic (310.86 nm) lines and (b) Ni atomic lines (341.48 nm) from an alloy sample as a function of time delay, using both a hemispherical cavity and magnets (square dots and solid curve), using the cavity only (circle dots and short dashed curve), and without confinement (triangle dots and short dotted) at a laser fluence of 6.2 J/cm2.

Fig. 7
Fig. 7

Emission intensity of trace-level Mg I atomic lines (288.16 nm) from an alloy sample as a function of time delay, using both a hemispherical cavity and magnets combined (square dots and solid curve), using the cavity only (circle dots and short dashed curve), and without confinement (triangle dots and short dotted) at a laser fluence of 6.9 J/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν 2 ν 1 = ( 1 1 β ) 1 / 2 ,
β = 8 π n k T e B 2 ,

Metrics