Abstract

We report on the experimental demonstration of ultrafast all-optical switching and wavelength down-conversion based on a novel nonlinear Mach-Zehnder interferometer with subwavelength grating and wire waveguides. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Since the device had no dedicated port to input optical signal to control switching a new approach was also implemented for all-optical switching control.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  2. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]
  3. L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
    [CrossRef]
  4. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [CrossRef] [PubMed]
  5. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
    [CrossRef] [PubMed]
  6. J. M. Hales and J. W. Perry, Introduction to Organic Electronic and Optoelectronic Materials and Device (eds S.-S. Sun and L. Dalton) 521–579 (CRC, 2008).
  7. S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
    [CrossRef]
  8. M. Eiselt, “Optical loop mirror with semiconductor-laser amplifier,” Electron. Lett. 28, 1509 (1992).
  9. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
    [CrossRef]
  10. N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
    [CrossRef]
  11. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [CrossRef] [PubMed]
  12. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
    [CrossRef] [PubMed]
  13. M. P. Fok and C. Shu, “Highly Nonlinear Bismuth-Oxide Fiber Based Dispersion Imbalanced Loop Mirror for Interferometric Noise Suppression,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.
  14. V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
    [CrossRef] [PubMed]
  15. M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).
  16. M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
    [CrossRef]
  17. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  18. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]
  19. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  20. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
    [CrossRef]
  21. F. A. M. Melloni, A. Canciamilla, C. Ferrari, and M. Torregiani, “Phase preserving wavelength conversion over 6Thz in a silicon coupled resonator optical waveguide”, in Optical Fiber Communication Conference, Post deadline Paper of 2009 OSA Technical Digest Series (Optical Society of America, 2009), paper PDPA6.
  22. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  23. B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
    [CrossRef]
  24. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
    [CrossRef]
  25. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [CrossRef] [PubMed]
  26. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  27. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .
  28. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [CrossRef] [PubMed]
  29. R. Akimoto, S. Gozu, T. Mozume, and H. Ishikawa, “Monolithically Integrated Ultrafast All-Optical Switch Consisting of Intersubband Optical Nonlinear Waveguide and Michelson Interferometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper CTuW2.

2010

2009

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

2008

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

2007

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

2006

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

2005

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

1999

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

1996

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
[CrossRef]

1993

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

1992

M. Eiselt, “Optical loop mirror with semiconductor-laser amplifier,” Electron. Lett. 28, 1509 (1992).

1988

Aers, G. C.

Aggarwal, I. D.

Agis, F. G.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Asimakis, S.

Bergman, K.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Bock, P. J.

Bubnov, M. M.

Bulla, D. A.

Cheben, P.

Choi, D. Y.

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Choy, D.

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Clausen, A. T.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Delage, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Delâge, A.

Densmore, A.

Doran, N. J.

Duelk, M.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Eggleton, B. J.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Eiselt, M.

M. Eiselt, “Optical loop mirror with semiconductor-laser amplifier,” Electron. Lett. 28, 1509 (1992).

Erasme, D.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Fischer, S.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Foster, M. A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Fu, L.

Fu, L. B.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

Gaeta, A. L.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Galili, M.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Gamper, E.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gini, E.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Girardi, R.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Gupta, S.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Hall, K. L.

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
[CrossRef]

Hall, T. J.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hunziker, W.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Ichikawa, J.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Jalali, B.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Janz, S.

Jeppesen, P.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Kitamura, K.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Koizumi, F.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Kravtsov, K.

Kurimura, S.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Lamont, M. R. E.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Lamontagne, B.

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lapointe, J.

Lee, B. G.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Lipson, M.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Littler, I. C.

Littler, I. C. M.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

Luan, F.

Luther-Davies, B.

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Madden, S.

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Madden, S. J.

Magi, E.

Mägi, E. C.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Melchior, H.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Moss, D. J.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Mulvad, H. C. H.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Nakajima, H.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Oxenløwe, L. K.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Parmigiani, F.

Patel, N. S.

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
[CrossRef]

Pelusi, M.

Pelusi, M. D.

Petropoulos, P.

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Prucnal, P. R.

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
[CrossRef] [PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Puleo, M.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Rauschenbach, K. A.

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
[CrossRef]

Richardson, D. J.

Rochette, M.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Rode, A. V.

Roelens, M. A. F.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Sanghera, J. S.

Schmid, J. H.

Shaw, L. B.

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Solli, D. R.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Sugimoto, N.

Ta’eed, V. G.

Ta'eed, V. G.

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Turner-Foster, A. C.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vogt, W.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Ware, C.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

Wood, D.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xu, D.-X.

Yeom, D. I.

Electron. Lett.

L. K. Oxenløwe, F. G. Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–371 (2008).
[CrossRef]

M. Eiselt, “Optical loop mirror with semiconductor-laser amplifier,” Electron. Lett. 28, 1509 (1992).

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: Beyond noise compression to BER reduction,” IEEE J. Sel. Top. Quant. Electron, Special Issue on All-Optical Signal Processing 12, 736 (2006).

IEEE Photon. Technol. Lett.

S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4x10 Gb/s WDM conversion in monolithic InP Mach-Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11(10), 1262–1264 (1999).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A Terahertz Optical Asymmetric Demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 8(12), 1695–1697 (1996).
[CrossRef]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Nat. Photonics

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14(12), 5038–5044 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Other

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .

R. Akimoto, S. Gozu, T. Mozume, and H. Ishikawa, “Monolithically Integrated Ultrafast All-Optical Switch Consisting of Intersubband Optical Nonlinear Waveguide and Michelson Interferometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper CTuW2.

J. M. Hales and J. W. Perry, Introduction to Organic Electronic and Optoelectronic Materials and Device (eds S.-S. Sun and L. Dalton) 521–579 (CRC, 2008).

F. A. M. Melloni, A. Canciamilla, C. Ferrari, and M. Torregiani, “Phase preserving wavelength conversion over 6Thz in a silicon coupled resonator optical waveguide”, in Optical Fiber Communication Conference, Post deadline Paper of 2009 OSA Technical Digest Series (Optical Society of America, 2009), paper PDPA6.

M. P. Fok and C. Shu, “Highly Nonlinear Bismuth-Oxide Fiber Based Dispersion Imbalanced Loop Mirror for Interferometric Noise Suppression,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the Mach-Zehnder interferometer (MZI). The MZI signal arm is comprised of a 50 µm SWG taper followed by a SWG waveguide (Λ = 400 nm, w = 300 nm, duty cycle 50%, length L = 4580 µm) and a SWG taper to transition back to wire waveguide. The reference arm is a wire waveguide (450 × 260 nm2) with a taper-to-taper structure (two 50 µm SWG tapers) to equalize the loss of both arms.

Fig. 2
Fig. 2

Scanning electron microscope (SEM) images of fabricated structures including: a) SWG taper b) Optical microscope image of a MZI (L = 150 μm) with SEM image detail of the SWG arm and the reference arm (wire waveguide). Interferometric measurements were done with a MZI with a 4580 µm long SWG waveguide.

Fig. 3
Fig. 3

The measured group index for a SWG waveguide using a Si wire waveguide reference arm and a 4580 µm long SWG straight waveguide signal arm. The group index of the reference wire waveguide (red) is estimated using a mode solver (Optiwave Corp.) by calculating the effective index of a 400 × 260 nm2 waveguide with silicon core, SU-8 upper cladding and SiO2 bottom cladding. The calculated (black) and the interferometrically measured (blue) group index for the SWG waveguide are shown for comparison.

Fig. 4
Fig. 4

Schematic diagram illustrating the concept used to demonstrate ultrafast all-optical sampling/switching capabilities of a fabricated device. A TEC cooler keeps the Mach-Zehnder all-optical switch at a constant temperature -inset (a). Temperature was used to select interferometric conditions (dark or bright fringe) at the MZIS output –inset (b). Optical clock was applied to invoke all-optical sampling/switching -insets (c) and (d); (e) -experimental results showing 1 ps pulses as seen on the bandwidth limited oscilloscope.

Fig. 5
Fig. 5

Schematic diagram of the experimental setup. A tunable continuous wave (cw) external cavity semiconductor laser used as a probe signal at λi = 1535.04 nm is coupled by polarization maintaining 2×2 PM coupler with optical pump/clock, a picosecond fiber mode locked laser at λc = 1558nm, into a MZIS via a PM tapered fiber. A 400 GHz array waveguide grating (AWG) separates both signals at the MZIS output. The inset is an overlaid picture taken by an OSA showing optical spectrum of the passively ML EDF laser, optical clock amplifying EDFA, and amplified cw signal at the device output, respectively.

Fig. 6
Fig. 6

Amplified switched MZIS output as seen by the bandwidth limited oscilloscope. (a) overlaid picture when both cw and clock are ON, clock ON and cw ON only; (b) - switched output after MZIS was temperature tuned to the next dark fringe.

Fig. 7
Fig. 7

Amplified MZIS switched output as seen using bandwidth limited oscilloscope. Top trace –the MZIS output when temperature was tuned for the operating point to sit on a bright fringe; lower trace –the MZIS output tuned to sit on a dark fringe, b) autocorrelation trace of the wavelength switched signal at λi = 1535.04 nm.

Metrics