Abstract

We report on the development of true free-standing phase transmission gratings for the extreme ultraviolet band. An ultra-nanocrystalline, 300 nm thin diamond film on a backside etched silicon wafer is structured by electron-beam lithography to periods of 1 μm. In this way, flat and stable gratings of 400 μm in diameter are fabricated. First-order net efficiencies up to 28% are obtained from measurements at a synchrotron beamline within a wavelength range from 5.0 nm to 8.3 nm, whereas the 0th order is suppressed to 1% near 6.8 nm. Higher diffraction orders up to the 3rd one contribute less than 7% in sum to the far-field pattern.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV Transmission Gratings for Astrophysical and Laboratory Applications,” Phys. Scripta 41, 13–20 (1990).
    [CrossRef]
  2. C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
    [CrossRef]
  3. R. K. Heilmann, M. Ahn, A. Bruccoleri, C.-H. Chang, E. M. Gullikson, P. Mukherjee, and M. L. Schattenburg, “Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands,” Appl. Opt. 50, 1364–1373 (2011).
    [CrossRef] [PubMed]
  4. H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39, R171–R188 (2006).
    [CrossRef]
  5. M. Itou, T. Harada, and T. Kita, “Soft X-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
    [CrossRef] [PubMed]
  6. H. Lin, L. Zhang, L. Li, C. Jin, H. Zhou, and T. Huo, “High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region,” Appl. Opt. 49, 4450–4459 (2010).
  7. D. R. McMullin, D. L. Judge, C. Tarrio, R. E. Vest, and F. Hanser, “Extreme-ultraviolet efficiency measurements of freestanding transmission gratings,” Appl. Opt. 43, 3797–3801 (2004).
    [CrossRef] [PubMed]
  8. K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).
  9. F. Salmassi, P. P. Naulleau, E. M. Gullikson, D. L. Olynick, and J. A. Liddle, “EUV Binary Phase Gratings: Fabrication and Application to Diffractive Optics,” http://escholarship.org/uc/item/6d42k5t7 (2005).
  10. P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).
  11. P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
    [CrossRef]
  12. M. Saidani and H. H. Solak, “High diffraction-efficiency molybdenum gratings for EUV lithography,” Microel. Eng. 86, 483–485 (2009).
    [CrossRef]
  13. B. X. Yang, “Fresnel and refractive lenses for X-rays,” Nucl. instr. in Phys. Res. A 328, 578–587 (1993).
    [CrossRef]
  14. C. Braig, P. Predehl, and E.-B. Kley, “Efficient extreme ultraviolet transmission gratings for plasma diagnostics,” Opt. Eng. 50(6), 066501 (2011).
    [CrossRef]
  15. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
    [CrossRef]
  16. Diane P. Hickey, Advanced Diamond Technologies Inc., 429 B Weber Road, #286, Romeoville, IL 60446, United States, http://www.thinDiamond.com (personal communication, 2010).
  17. M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).
  18. K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
    [CrossRef]
  19. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
    [CrossRef]

2011 (2)

2010 (1)

2009 (2)

M. Saidani and H. H. Solak, “High diffraction-efficiency molybdenum gratings for EUV lithography,” Microel. Eng. 86, 483–485 (2009).
[CrossRef]

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

2008 (1)

C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
[CrossRef]

2007 (1)

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

2006 (2)

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39, R171–R188 (2006).
[CrossRef]

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

2004 (1)

2000 (1)

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

1997 (1)

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

1994 (1)

1993 (2)

B. X. Yang, “Fresnel and refractive lenses for X-rays,” Nucl. instr. in Phys. Res. A 328, 578–587 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[CrossRef]

1990 (1)

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV Transmission Gratings for Astrophysical and Laboratory Applications,” Phys. Scripta 41, 13–20 (1990).
[CrossRef]

1989 (1)

Ahn, M.

R. K. Heilmann, M. Ahn, A. Bruccoleri, C.-H. Chang, E. M. Gullikson, P. Mukherjee, and M. L. Schattenburg, “Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands,” Appl. Opt. 50, 1364–1373 (2011).
[CrossRef] [PubMed]

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Anderson, E. H.

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV Transmission Gratings for Astrophysical and Laboratory Applications,” Phys. Scripta 41, 13–20 (1990).
[CrossRef]

Barkusky, F.

C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
[CrossRef]

Barstow, M. A.

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

Bass, M.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Bokor, J.

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

Braeuninger, H. W.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Braig, C.

C. Braig, P. Predehl, and E.-B. Kley, “Efficient extreme ultraviolet transmission gratings for plasma diagnostics,” Opt. Eng. 50(6), 066501 (2011).
[CrossRef]

Brinkman, A. C.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Bruccoleri, A.

Chang, C.-H.

Cho, C. H.

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

Cruddace, R. G.

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

Davis, J.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[CrossRef]

DeCusatis, C.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Dewey, D.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Drake, J. J.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Flanagan, K.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Flanagan, K. A.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Grann, E. B.

Gullikson, E. M.

R. K. Heilmann, M. Ahn, A. Bruccoleri, C.-H. Chang, E. M. Gullikson, P. Mukherjee, and M. L. Schattenburg, “Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands,” Appl. Opt. 50, 1364–1373 (2011).
[CrossRef] [PubMed]

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[CrossRef]

Gunsing, T.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Hanser, F.

Harada, T.

Hartner, G. D.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Heilmann, R.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Heilmann, R. K.

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[CrossRef]

Huenemoerder, D.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Huo, T.

Itou, M.

Jin, C.

Juda, J. Z.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Juda, M.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Judge, D. L.

Kaastra, J. S.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Kita, T.

Kley, E.-B.

C. Braig, P. Predehl, and E.-B. Kley, “Efficient extreme ultraviolet transmission gratings for plasma diagnostics,” Opt. Eng. 50(6), 066501 (2011).
[CrossRef]

Kowalski, M. P.

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

Levine, A.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Li, G.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Li, L.

Lin, H.

Mahajan, V. N.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Mann, K.

C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
[CrossRef]

Marshall, H.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Marshall, H. L.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

McMullin, D. R.

Moharam, M. G.

Mukherjee, P.

Naulleau, P. P.

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

Peth, C.

C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
[CrossRef]

Pommet, D. A.

Predehl, P.

C. Braig, P. Predehl, and E.-B. Kley, “Efficient extreme ultraviolet transmission gratings for plasma diagnostics,” Opt. Eng. 50(6), 066501 (2011).
[CrossRef]

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Prigozhin, G.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Rasmussen, A.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Ricker, G.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Saidani, M.

M. Saidani and H. H. Solak, “High diffraction-efficiency molybdenum gratings for EUV lithography,” Microel. Eng. 86, 483–485 (2009).
[CrossRef]

Schattenburg, M.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Schattenburg, M. L.

Schulz, N.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Smith, H. I.

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV Transmission Gratings for Astrophysical and Laboratory Applications,” Phys. Scripta 41, 13–20 (1990).
[CrossRef]

Solak, H. H.

M. Saidani and H. H. Solak, “High diffraction-efficiency molybdenum gratings for EUV lithography,” Microel. Eng. 86, 483–485 (2009).
[CrossRef]

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39, R171–R188 (2006).
[CrossRef]

Swartz, D. A.

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Tarrio, C.

van Stryland, E.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Vest, R. E.

Wood, K. S.

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

Yang, B. X.

B. X. Yang, “Fresnel and refractive lenses for X-rays,” Nucl. instr. in Phys. Res. A 328, 578–587 (1993).
[CrossRef]

Zhang, L.

Zhao, Y.

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

Zhou, H.

Adv. Space Res. (1)

K. S. Wood, M. P. Kowalski, R. G. Cruddace, and M. A. Barstow, “EUV spectroscopy in astrophysics: The role of compact objects,” Adv. Space Res. 38, 1501–1508 (2006).
[CrossRef]

Appl. Opt. (4)

Atomic Data and Nuclear Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables 54(2), 181–342 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39, R171–R188 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

C. Peth, F. Barkusky, and K. Mann, “Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source,” J. Phys. D: Appl. Phys. 41, 105202 (2008).
[CrossRef]

J. Synchrotron Rad. (1)

P. P. Naulleau, C. H. Cho, E. M. Gullikson, and J. Bokor, “Transmission phase gratings for EUV interferometry,” J. Synchrotron Rad. 7, 405–410 (2000).
[CrossRef]

Microel. Eng. (1)

M. Saidani and H. H. Solak, “High diffraction-efficiency molybdenum gratings for EUV lithography,” Microel. Eng. 86, 483–485 (2009).
[CrossRef]

Nucl. instr. in Phys. Res. A (1)

B. X. Yang, “Fresnel and refractive lenses for X-rays,” Nucl. instr. in Phys. Res. A 328, 578–587 (1993).
[CrossRef]

Opt. Eng. (1)

C. Braig, P. Predehl, and E.-B. Kley, “Efficient extreme ultraviolet transmission gratings for plasma diagnostics,” Opt. Eng. 50(6), 066501 (2011).
[CrossRef]

Phys. Scripta (1)

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV Transmission Gratings for Astrophysical and Laboratory Applications,” Phys. Scripta 41, 13–20 (1990).
[CrossRef]

Other (5)

K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for X-ray astronomy using a blazed transmission grating,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy III , Stephen L. O’Dell and Giovanni Pareschi, eds., Proc. SPIE6688, 66880Y (2007).

F. Salmassi, P. P. Naulleau, E. M. Gullikson, D. L. Olynick, and J. A. Liddle, “EUV Binary Phase Gratings: Fabrication and Application to Diffractive Optics,” http://escholarship.org/uc/item/6d42k5t7 (2005).

P. Predehl, H. W. Braeuninger, A. C. Brinkman, D. Dewey, J. J. Drake, K. A. Flanagan, T. Gunsing, G. D. Hartner, J. Z. Juda, M. Juda, J. S. Kaastra, H. L. Marshall, and D. A. Swartz, “X-ray calibration of the AXAF Low Energy Transmission Grating Spectrometer: effective area,” in Grazing Incidence and Multilayer X-Ray Optical Systems , R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE3113, 172–180 (1997).

Diane P. Hickey, Advanced Diamond Technologies Inc., 429 B Weber Road, #286, Romeoville, IL 60446, United States, http://www.thinDiamond.com (personal communication, 2010).

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. van Stryland, Handbook of Optics: Optical properties of materials, nonlinear optics, quantum optics (McGraw Hill Professional, New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry of plane binary phase gratings, consisting of N slits Sn and bars Bn with 1 ≤ nN. Their thickness Δt and the fill factor f are drawn to scale with the sample in use. The TE-polarized incident (k⃗ inc) – and diffracted (k⃗ out) – light to an angle θm is indicated by red arrows, whose relative lengths represent the (Gaussian) intensity distribution.

Fig. 2
Fig. 2

General description of binary transmission gratings using the parameters Hλ and N 0. For the sample in use with f = 0.564, efficiencies of the 0th and (±1)st order are shown. The hatched regions indicate an efficiency ≤ 0.1% (left) and ≥ 30% (right), respectively.

Fig. 8
Fig. 8

The real and imaginary increment of the refractive index n = 1 − δ for diamond (left) and the critical zone number N 0 = δ/(2πβ) (right). In each case, ideal values of pure carbon (black), based on [15], and experimental data (red) of the sample in use are shown.

Fig. 3
Fig. 3

Optimization of binary diamond gratings as a function of the fill factor and thickness Δt. All plots are based on the scalar theory for λc = 5.89 nm. Hatched regions indicate an efficiency ≤ 1% (left) or ≥ 30% (middle) and an intensity ratio ≥ 30 (right), respectively.

Fig. 4
Fig. 4

Fabrication of stand-alone binary gratings from DoSi wafers. The Si wafer is colored in light blue, the diamond film in red, and chromium in blue. Resist layers are drawn in gray.

Fig. 5
Fig. 5

SEM pictures of the grating with a period of 1 μm. (a) Backside-etched Si window, spanned by the UNCD membrane (b) Perpendicular support bar (5 μm in width) with adjacent grating structure (c) Determination of the fill factor (d) Crystalline grains of the UNCD film (e) FIB cut of three grating bars (f) Tilted view on the grating-support transition.

Fig. 6
Fig. 6

Diffraction efficiency of the 0th order (left) and the (±1)st/0th order power ratio (right) of the measured sample. The center-of-mass symbol indicates the extremal values 1.0% and 29 of the corrected data set. For clarity, only each 2nd error bar is drawn.

Fig. 7
Fig. 7

Far-field diffraction pattern of the sample grating with a period of 1.0μm, measured at λ = 6.85 nm (TE polarization). The plateau-like shape of the peaks originates from the limited width of the detector entrance slit. Only a few error bars in the 0th order are drawn.

Fig. 9
Fig. 9

RMS difference σ Pm between RCWA calculations and the scalar theory within the spectral range 5.0nm ≤ λ ≤ 7.5nm for |m| ≤ 3. The lines are drawn as a guide to the eye.

Tables (4)

Tables Icon

Table 1 Transmission of an unstructured, solid membrane having the same thickness as the structured grating sample, extrapolated from a neighbored region. See text for explanation.

Tables Icon

Table 2 Measured diffraction efficiencies for |m| ≤ 3 in [%]. Raw data P ± m from the Physikalisch-Technische Bundesanstalt (PTB) are typed in gray, corrected ones in black.

Tables Icon

Table 3 Efficiencies from a rigorous coupled wave analysis (RCWA) of a grating made from UNC diamond with d = 0.1 μm, Δt = 0.32 μm and f = 75% in TE polarization.

Tables Icon

Table 4 Comparison of diffraction efficiencies as obtained from an RCWA simulation ( P ± m ) and the scalar theory ( P ± m ) for the design from Sect. 3 and a period of 1.0 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N 0 δ 2 π β and H λ 2 δ λ Δ t H λ = δ δ c λ c λ with δ c δ ( λ c ) .
P m ( λ ) = C m 2 ( 1 2 cos ( π H λ ) e 1 2 N 0 H λ + e 1 N 0 H λ )        with         C m | π m | 1 | sin ( π f m ) | .
P 0 ( λ ) = F S 2 + 2 cos ( π H λ ) e 1 2 N 0 H λ F S F B + e 1 N 0 H λ F B 2         with          F S 1 f and F B f .
P ± 1 / P 0 = C 1 2 ( 1 + G N 0 ) 2 / ( F S F B G N 0 ) 2                with            G N 0 e 1 / 2 N 0 .
P ˜ 0 ( λ ) = 2 g ( r ) Θ pur ( r ) T 0 ( λ ) d 2 r , where 2 g ( r ) d 2 r = 1
σ P m 2 1 λ max λ min λ min λ max [ P m ( λ ) P m ( λ ) ] 2 d λ for 5.0 nm λ 7.5 nm ,

Metrics