Abstract

We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  2. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
    [CrossRef]
  3. G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [CrossRef] [PubMed]
  4. P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
    [CrossRef]
  5. X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
    [CrossRef]
  6. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
    [CrossRef]
  7. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
    [CrossRef]
  8. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).
  9. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
    [CrossRef]
  10. C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
    [CrossRef]
  11. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [CrossRef]
  12. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
    [CrossRef]
  13. L. Hou, M. Haji, J. Akbar, B. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36, 966–968 (2011).
    [CrossRef] [PubMed]
  14. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
    [CrossRef]
  15. J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
    [CrossRef]
  16. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
    [CrossRef]
  17. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
    [CrossRef]
  18. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
    [CrossRef]
  19. S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
    [CrossRef]
  20. D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010).
    [CrossRef] [PubMed]
  21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
    [CrossRef]
  22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [CrossRef]
  23. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14, 167–174 (1997).
    [CrossRef]
  24. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
    [CrossRef]
  25. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [CrossRef]
  26. L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
    [CrossRef]
  27. J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
    [CrossRef]
  28. S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
    [CrossRef]
  29. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
    [CrossRef] [PubMed]

2011

2010

D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010).
[CrossRef] [PubMed]

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

2009

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

2007

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[CrossRef] [PubMed]

2006

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

2004

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
[CrossRef]

2003

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
[CrossRef]

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

2002

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

2000

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

1997

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[CrossRef]

D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14, 167–174 (1997).
[CrossRef]

1996

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
[CrossRef]

1995

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).

1993

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

1991

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

1986

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[CrossRef] [PubMed]

Abeles, J.

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

Akbar, J.

Amann, A.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

Arahira, S.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
[CrossRef]

Avrutin, E. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

Bitauld, D.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010).
[CrossRef] [PubMed]

Boerner, C.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Braun, A.

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

Bryce, A. C.

Campany, J.

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Carney, K.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Chen, Y. K.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Chin, M. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Choi, Myoung-Taek

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Delfyett, P. J.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

DePriest, C. M.

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

Eliyahu, D.

Ferber, S.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Flynn, M. B.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Fontaine, N. K.

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

Fukushima, S.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

Gee, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Gordon, J. P.

Grein, M. E.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

Haji, M.

Harada, M.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
[CrossRef]

Haus, H. A.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[CrossRef] [PubMed]

Hegarty, S. P.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Hirata, A.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
[CrossRef]

Hou, L.

Huyet, G.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Ippen, E. P.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

Ironside, C. N.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

Izadpanah, H.

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Jiang, L. A.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

Kelly, B.

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

Krauss, T. F.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Kroh, M.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Landais, P.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Latkowski, S.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Lee, Wangkuen

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Logan, R. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Ludwig, R.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Maldonado-Basilio, R.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Marembert, V.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Marsh, J. H.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

Martins-Filho, J. F.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

Matsui, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
[CrossRef]

McDougall, S. D.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

McInerney, J. G.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Muramoto, Y.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

Nagatsuma, T.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
[CrossRef]

Novak, D.

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

O’Brien, S.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010).
[CrossRef] [PubMed]

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

O’Donoghue, S.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

O’Faolain, L.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

O’Gorman, J.

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

Ogawa, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
[CrossRef]

Ogura, I.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[CrossRef]

Osborne, S.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010).
[CrossRef] [PubMed]

Ozharar, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Parra-Cetina, J.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Paschotta, R.

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
[CrossRef]

Phelan, R.

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

Philippe, S.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

Qiu, B.

Quinlan, F.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

Roberts, J. S.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

Salvatore, R. A.

Schmidt-Langhorst, C.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Schubert, C.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

Scott, R. P.

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

Seeds, A. J.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

Shimizu, T.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[CrossRef]

Silva, C. F. C.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

Street, M. W.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

Tanbun-Ek, T.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Thayne, I. G.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Todaro, M. T.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Tourrenc, J. P.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

Valley, G.

Vasil’ev, P.

P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Weber, H.-G.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Wong, S. T.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

Wu, M. C.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Yanson, D. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

Yariv, A.

Yi, X.

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

Yilmaz, T.

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

Yokoyama, H.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[CrossRef]

Yoo, S.

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

Appl. Phys. B

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
[CrossRef]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Appl. Phys. Lett.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010).
[CrossRef]

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991).
[CrossRef]

Electron. Lett.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[CrossRef]

IEE Proc. Optoelectron.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

IEEE J. Quantum Electron.

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002).
[CrossRef]

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996).
[CrossRef]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002).
[CrossRef]

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995).
[CrossRef]

IEEE Photonics Tech. Lett.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010).
[CrossRef]

J. Lightwave Tech.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006).
[CrossRef]

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006).
[CrossRef]

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010).
[CrossRef]

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003).
[CrossRef]

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

New J. Phys.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Nanostruct. Fundam. Appl.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010).
[CrossRef]

Other

P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) and (c): Feature density functions of the 6DM and the 4DM lasers respectively. Dashed lines indicate intervals where the Fourier transform of the spectral filtering function chosen is negative. Insets: Calculation of the modal threshold gain for the laser cavities schematically pictured in the lower panels of each figure. Lower panels: Laser cavity schematics indicating the locations of the additional features. The devices are high-reflection (HR) coated and include a saturable absorber section adjacent to the HR mirror as indicated. (b): Mode-locked optical spectrum for the 6DM device. The voltage across the saturable absorber section is −2.0 V. The current in the gain section is 175 mA. (d) Mode-locked optical spectrum for the 4DM device. The voltage across the saturable absorber section is −2.3 V. The current in the gain section is 180 mA Insets: (b) Autocorrelation measurement (black solid line) and Fourier limited equivalent for the 6DM laser (red dashed line). (d) Autocorrelation measurement for the 4DM laser.

Fig. 2
Fig. 2

Optical cross-correlation setup. The top right inset is a schematic representation of the autocorrelation result in a general case (τ′ ≠ 0) and when the delay between the two arms is an integer number of periods (τ = 0). Γ11 and Γ22 are the autocorrelations of the signals that propagated in each arm and Γ 12 = Γ Δ N 12 ( τ + τ i ) and Γ 21 = Γ Δ N 12 ( τ τ i ) are the cross-correlation of the two signals with a coarse delay of ΔN periods.

Fig. 3
Fig. 3

Measurement of the timing jitter. (a) and (b) display the autocorrelation measurements and data fittings performed with the FP device at 16 m delay (ΔN = 4000) and the 6DM device at 24 m delay (ΔN = 12000) respectively. Γ11 and Γ22 are the autocorrelation of the intensity from each arm separately. ”Data” is the measurement of Γ i and ”Fit” is the fitted theoretical curve of Γ i . In (c) and (d) the black squares represent the timing variances used to fit the Γ i curves for different delays and the red line is a linear fit of those points.

Fig. 4
Fig. 4

Optical spectrum at the output of the SOA. Inset: Electrical spectrum at the output of the photodiode (narrow blue line), and Lorentzian fit (thick red line).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I SH ( t ) t ( I ( t ) + I ( t + τ ) 2 t I ( t ) 2 t + I ( t ) I ( t + τ ) t .
Γ i ( τ i ) = Γ 11 ( τ i ) + Γ 22 ( τ i ) + Γ Δ N 12 ( τ + τ i ) + Γ Δ N 12 ( τ τ i ) ,
Γ i ( τ i ) = Γ 11 ( τ i ) + Γ 22 ( τ i ) + 2 × Γ 22 ( τ i ) * G D ( τ i ) * G Δ N ( τ i ) .
I 0 ( t ) = 1 T M p ˜ ( M T ) e 2 i π M T t
Γ ( τ ) = I ( t ) I ( t + τ ) t = 1 T 2 M | p ˜ ( M T ) | 2 e 2 i π M T τ e 2 i π M T J τ ( t ) t
Γ ( τ ) = 1 T 2 M | p ˜ ( M T ) | 2 e 2 i π M T τ e 2 T 3 ( π M σ p p ) 2 | τ |
Γ Δ N ( τ ) = 1 T 2 M | p ˜ ( M T ) | 2 e 2 i π M Δ N e 2 i π M T τ e 2 T 3 ( τ M σ p p ) 2 | Δ N T + τ |
Γ Δ N ( τ ) = Γ 0 ( τ ) * G Δ N ( τ )
Γ 0 ( τ ) = I 0 ( t ) I 0 ( t + τ ) t = 1 T 2 M | p ˜ ( M T ) | 2 e 2 i π M T τ
G Δ N ( τ ) = 1 [ e 2 ( π ν σ p p ) 2 Δ N ] ( τ ) = 1 2 π Δ N σ p p exp ( 1 2 ( τ Δ N σ p p ) 2 ) .
Γ 0 12 ( τ ) = 1 T 2 M p ˜ 1 ( M T ) * p ˜ 2 ( M T ) e 2 i π M T τ
Γ Δ N 12 ( τ ) = Γ 0 12 ( τ ) * G Δ N
Γ i ( τ i ) = ( I 1 ( t ) + I 2 ( t + τ ) ) . ( I 1 ( t + τ i ) + I 2 ( t + τ + τ i ) ) t = I 1 ( t ) I 1 ( t + τ i ) + I 2 ( t + τ ) I 2 ( t + τ + τ i ) + I 1 ( t ) I 2 ( t + τ + τ i ) + I 2 ( t + τ ) I 1 ( t + τ i ) t = Γ 11 ( τ i ) + Γ 22 ( τ i ) + Γ Δ N 12 ( τ + τ i ) + Γ Δ N 12 ( τ τ i ) ,
S ( ν ) = [ Γ ( τ ) ] ( ν ) = 1 T 2 M | p ˜ ( M T ) | 2 [ e 2 i π M T τ e 2 T 3 ( π M σ p p ) 2 | τ | ] ( ν ) = 1 T 2 M | p ˜ ( M T ) | 2 δ ( ν M T ) * 1 ( π M σ p p ) 2 T 3 + T 3 ν 2 ( M σ p p ) 2 .

Metrics