Abstract

We present and numerically characterize a surface-plasmon-resonance sensor based on an H-shaped optical fiber. In our design, the two U-shaped grooves of the H-fiber are first coated with a thin gold layer and then covered by a uniform titanium dioxide layer to facilitate spectral tuning of the device. A finite element method analysis of the sensor indicates that a refractive-index resolution of up to 5 · 103 nm/RIU can be obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).
  4. M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
    [CrossRef]
  5. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).
  6. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
    [CrossRef]
  7. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
    [CrossRef]
  8. O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
    [CrossRef]
  9. M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sensors 2009, 524237 (2009).
  10. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  11. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
    [CrossRef] [PubMed]
  12. A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
    [CrossRef] [PubMed]
  13. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15, 11843–11848 (2007).
    [CrossRef] [PubMed]
  14. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
    [CrossRef] [PubMed]
  15. H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
    [CrossRef]
  16. T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
    [CrossRef]
  17. N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
    [CrossRef]
  18. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
    [CrossRef] [PubMed]
  19. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34, 76–78 (2009).
    [CrossRef]
  20. D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.
  21. M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
    [CrossRef]
  22. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
    [CrossRef] [PubMed]
  23. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
    [CrossRef]
  24. E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, 1988), p. 88.
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. COMSOL, Inc., Burlington, MA., USA, COMSOL Multiphysics . http://www.comsol.com/ .
  27. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216–1220 (2004).
    [CrossRef] [PubMed]
  28. S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

2011

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

2010

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35, 637–639 (2010).
[CrossRef] [PubMed]

2009

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34, 76–78 (2009).
[CrossRef]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
[CrossRef] [PubMed]

S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sensors 2009, 524237 (2009).

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

2008

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
[CrossRef]

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef] [PubMed]

2007

2006

2004

1998

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

1988

E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, 1988), p. 88.

1968

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Albert, J.

Allsop, T.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Araújo, F.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Baptista, J. M.

Benito-Peña, E.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Bennion, I.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Brown, P.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Chen, C.

Cordeiro, C. M. B.

Cox, F. M.

Csaki, A.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Cuenot, S.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
[CrossRef]

Dakka, M. A.

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Diaz-Herrera, N.

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

Díaz-Herrera, N.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Docherty, A.

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Esteban, O.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

Ferreira, L.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

Frazão, O.

Fritzsche, W.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Gonzalez-Cano, A.

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

González-Cano, A.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Guerreiro, A.

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

Gupta, B. D.

S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).

Han, Y.-G.

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

Hautakorpi, M.

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef] [PubMed]

Henkel, T.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Jahn, F.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Kalli, K.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Kanso, M.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
[CrossRef]

Kim, H.-J.

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

Kown, O.-J.

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Kuhlmey, B. T.

Large, M. C. J.

Latka, I.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Lee, S. B.

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

Louarn, G.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
[CrossRef]

Ludvigsen, H.

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[CrossRef] [PubMed]

Luna-Moreno, D.

Lwin, R.

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malsch, D.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Mapps, D.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Martynkien, T.

Mattinen, M.

Monzón-Hernández, D.

Mou, C.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Navarrete, M.-C.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

Neal, R.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Neumann, E. G.

E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, 1988), p. 88.

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Orellana, G.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Otto, A.

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Rehman, S.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Russell, P. St. J.

Santos, J.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Santos, J. L.

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34, 76–78 (2009).
[CrossRef]

Schneider, T.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Schröder, K.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Schuster, K.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Schwuchow, A.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Shevchenko, Y.

Singh, S.

S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

Skorobogatiy, M.

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sensors 2009, 524237 (2009).

Spittel, R.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Talavera, D.

Urbanczyk, W.

Verma, K.

S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).

Viegas, D.

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

Villatoro, J.

Wang, A.

Webb, D. J.

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Wojcik, J.

Xu, T.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Zopf, D.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

ACS Nano

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B 102, 81–85 (2011).
[CrossRef]

J. Lightwave Technol.

J. Sensors

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sensors 2009, 524237 (2009).

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sensors 2009 (2009).

Laser Photon. Rev.

O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Meas. Sci. Technol.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D. J. Webb, D. Mapps, and I. Bennion, “Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing,” Opt. Fiber Technol. 15, 477–482 (2009).
[CrossRef]

Opt. Lasers Eng.

N. Díaz-Herrera, O. Esteban, M.-C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Opt. Lett.

Plasmonics

M.-C. Navarrete, N. Diaz-Herrera, A. Gonzalez-Cano, and O. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010).
[CrossRef]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiment,” Plasmonics 3, 49–57 (2008).
[CrossRef]

Sens. Transducers J.

S. Singh, K. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings: a comparative study,” Sens. Transducers J. 100, 116–124 (2009).

Small

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[CrossRef] [PubMed]

Z. Naturforsch.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Z. Phys.

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, 1988), p. 88.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

COMSOL, Inc., Burlington, MA., USA, COMSOL Multiphysics . http://www.comsol.com/ .

D. Viegas, M. Hautakorpi, A. Guerreiro, J. L. Santos, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on H-shaped optical fibre,” in “Fourth European Workshop on Optical Fibre Sensors ,” J. M. L.-H. J. L. Santos, B. Culshaw, and W. N. MacPherson, eds. (Proc. SPIE, 2010), 7653.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of the H-shaped fiber sensor.

Fig. 2
Fig. 2

(a) Real parts of the effective indices of the fundamental core and plasmonic modes (RIU - Refractive index unit) and the fundamental core mode loss (red) as a function of wavelength. (b) Distribution of the longitudinal component of the fundamental mode Poynting vector in the plane perpendicular to the optical axis. (c) Numerical values of the Poynting vector along the dashed line in (b).

Fig. 3
Fig. 3

Fundamental core mode loss spectra for different (a) metal and (b) dielectric layer thicknesses, m and d respectively, (c) core doping levels and (d) distances l between the core edge and the groove bottom.

Fig. 4
Fig. 4

(a) Fundamental core mode loss spectra and (b) the sensitivity for different analyte refractive indices na (solid (open) circle: corresponding resonance wavelength is inside (outside) specified spectral range of the sensor).

Fig. 5
Fig. 5

Estimated average sensitivity for a change of the analyte refractive index by 0.01 from 1.32 to 1.33 calculated for different core doping levels (fundamental core mode).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k = β j 1 2 α ,
α = 2 k 0 Im { n eff } , and
β = Re { n eff } k 0 .
P ( z ) = P 0 exp ( α z ) ,
k s p p ω c ( ɛ m ɛ d ɛ m + ɛ d ) 1 / 2
S = Δ λ Δ n a .

Metrics