Abstract

An approach for the multiple-frequency millimeter-wave (mm-wave) signals generation is proposed and demonstrated, specifically, which can be applied to a radio-over-fiber (RoF) system with multiple base stations (BSs). In this scheme, optical double sideband (ODSB) modulation is achieved using a Mach-Zehnder modulator (MZM) to generate the two-sideband signals. New frequencies of the optical signals are obtained by using four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). At the BSs, two different frequencies are achieved using a comb optical filter (COF), and which then input a photodiode (PD) to generate the mm-wave signals with the frequencies of 20, 40 or 60 GHz for different BSs, by mixing of these frequencies components. Experimental results verify that the proposed multiple-frequency mm-wave signals generation scheme for a RoF system with multiple base stations can work properly.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  3. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation,” Opt. Lett. 36(4), 546–548 (2011).
    [CrossRef] [PubMed]
  4. G. K. Chang, Z. Jia, J. Yu, and A. Chowdhury, “Super broadband optical wireless access technologies,” presented at the OFC/NFOEC 2008, Optical Soc. Amer., Washington, DC, OThD1 (2008).
  5. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [CrossRef]
  6. Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
    [CrossRef]
  7. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express 18(24), 24588–24594 (2010).
    [CrossRef] [PubMed]
  8. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  9. A. M. J. Koonen and M. G. Í. Larrode, “Radio-over-MMF techniques—part II: microwave to millimeter-wave systems,” J. Lightwave Technol. 26(15), 2396–2408 (2008).
    [CrossRef]
  10. H. Kim and J. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
    [CrossRef]
  11. F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
    [CrossRef]
  12. A. Wiberg, P. Pérez-Millán, M. V. Andrés, and P. O. Hedekvist, “Microwave photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings,” J. Lightwave Technol. 24(1), 329–334 (2006).
    [CrossRef]
  13. W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
    [CrossRef]

2011

2010

F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express 18(24), 24588–24594 (2010).
[CrossRef] [PubMed]

H. Kim and J. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

2009

2008

A. M. J. Koonen and M. G. Í. Larrode, “Radio-over-MMF techniques—part II: microwave to millimeter-wave systems,” J. Lightwave Technol. 26(15), 2396–2408 (2008).
[CrossRef]

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

2007

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006

Andrés, M. V.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Chang, G. K.

Dong, J.

Ellinas, G.

Ezra, Y.

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

Haridim, M.

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

Hedekvist, P. O.

Jia, Z.

Kim, H.

H. Kim and J. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

Koonen, A. M. J.

Larrode, M. G. Í.

Lembrikov, B.

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

Li, S.

Li, W.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Liu, J.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Minasian, R.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Pérez-Millán, P.

Qi, X.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Ran, M.

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

Song, J.

H. Kim and J. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

Wang, F.

Wang, L.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Wang, Q.

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

Wiberg, A.

Xie, L.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Xu, E.

Yao, J.

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

Yu, J.

Zeng, F.

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

Zhang, H.

Zhang, X.

Zheng, X.

Zhou, B.

Zhu, N.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Electron. Lett.

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Ezra, M. Haridim, B. Lembrikov, and M. Ran, “Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier,” IEEE Photon. Technol. Lett. 20(7), 484–486 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

H. Kim and J. Song, “Full-duplex WDM-based RoF system using all-optical SSB frequency upconversion and wavelength re-use techniques,” IEEE Trans. Microw. Theory Tech. 58(11), 3175–3180 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Commun.

W. Li, N. Zhu, L. Wang, J. Liu, X. Qi, and L. Xie, “Carrier generation and IF signal up-conversion using optical injection locking and stimulated Brillouin scattering,” Opt. Commun. 283(24), 5207–5212 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. K. Chang, Z. Jia, J. Yu, and A. Chowdhury, “Super broadband optical wireless access technologies,” presented at the OFC/NFOEC 2008, Optical Soc. Amer., Washington, DC, OThD1 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

RoF system with multiple base stations of the proposed multiple-frequency mm-wave signals generation. CS: central station, BS: base station, PC: polarization controller, RF: radio frequency, ODSB: optical double sideband, OS: optical splitter, OC: optical coupler, TOF: tunable optical filter, MZM: Mach-Zehnder modulator, SOA: semiconductor optical amplifier, VOA: variable optical attenuator, EDFA: erbium-doped optical amplifier, PD: photodiode, EA: electric amplifier.

Fig. 2
Fig. 2

Experimental setup for the proposed scheme. OSA: optical spectrum analyzer,ESA: electrical spectrum analyzer, BER-T: bit error rate tester, COF: comb optical filter.

Fig. 3
Fig. 3

Optical spectra of optical double sideband modulation after the MZM.

Fig. 4
Fig. 4

Optical spectra of the modulated and un-modulated signals before the SOA.

Fig. 5
Fig. 5

Optical spectra of FWM in the SOA.

Fig. 6
Fig. 6

Measured electrical spectrum after the PD for 60 GHz. RF.

Fig. 8
Fig. 8

Measured electrical spectrum after the PD for 20 GHz. RF.

Fig. 7
Fig. 7

Measured electrical spectrum after the PD for 40 GHz. RF.

Fig. 9
Fig. 9

Bit error rate vs. received power and eye diagrams for different transmission fiber distance.

Metrics