Abstract

We report on a tunable multi-watt ytterbium-doped fiber laser bridging the gap from three-level lasing around 980 nm to true four-level lasing at 1100 nm. Wavelength-locking and -tuning was achieved by using an external volume-Bragg grating(VBG) as the cavity end mirror. The results are compared with detailed numerical calculations based on a spectrally resolved rate equation analysis, taking competing emission at other wavelengths into account.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
    [CrossRef] [PubMed]
  2. P. Gross, M. Klein, T. Walde, K. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 27, 418–420 (2002).
    [CrossRef]
  3. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  4. M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, and H. Mueller, “10 W widely tunable narrow linewidth double-clad fiber ring laser,” Opt. Express 10, 139–144 (2002).
    [PubMed]
  5. J. Koponen, M. Sderlund, H. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247–1256 (2008).
    [CrossRef] [PubMed]
  6. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34, 1285–1287 (2009).
    [CrossRef] [PubMed]
  7. J. Nilsson, J. Minelly, R. Paschotta, A. Tropper, and D. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
    [CrossRef]
  8. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [CrossRef]
  9. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
    [CrossRef]
  10. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
    [CrossRef]
  11. Michael T. Heath, Scientific Computing , 2nd ed. (McGraw-Hill, 2002).
  12. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30, 2281–2283 (2005).
    [CrossRef] [PubMed]
  13. B. Jacobsson, J. Hellstrom, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15, 1003–1010 (2007).
    [CrossRef] [PubMed]
  14. P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15, 11336–11340 (2007).
    [CrossRef] [PubMed]
  15. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [CrossRef]

2009 (1)

2008 (2)

J. Koponen, M. Sderlund, H. Hoffman, D. Kliner, J. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247–1256 (2008).
[CrossRef] [PubMed]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

2007 (2)

2005 (1)

2004 (1)

2002 (3)

1998 (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

J. Nilsson, J. Minelly, R. Paschotta, A. Tropper, and D. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
[CrossRef]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Adel, P.

Auerbach, M.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Boller, K.

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Engholm, M.

Fallnich, C.

Gross, P.

Hanna, D.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Heath, Michael T.

Michael T. Heath, Scientific Computing , 2nd ed. (McGraw-Hill, 2002).

Hellstrom, J.

Hellstrom, J. E.

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Hoffman, H.

Hotoleanu, M.

Jacobsson, B.

Jelger, P.

Jeong, Y.

Jetschke, S.

Klein, M.

Kliner, D.

Koplow, J.

Koponen, J.

Laurell, F.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Minelly, J.

Mueller, H.

Nilsson, J.

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef] [PubMed]

J. Nilsson, J. Minelly, R. Paschotta, A. Tropper, and D. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Norin, L.

Paschotta, R.

J. Nilsson, J. Minelly, R. Paschotta, A. Tropper, and D. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

Pasiskevicius, V.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Payne, D.

Sahu, J.

Sderlund, M.

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

Tiihonen, M.

Tropper, A.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Unger, S.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

Walde, T.

Wandt, D.

Wessels, P.

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Opt. Commun. (2)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136(5–6), 375–378 (1997).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun. 156(4–6), 264–270 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (1)

Michael T. Heath, Scientific Computing , 2nd ed. (McGraw-Hill, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectrally resolved quenching losses per dB pump absorption for several quenched ion fractions in a fiber with cladding/core ratio of 90.

Fig. 2
Fig. 2

Dependence of inversion level and pump absorption (a) and fiber output signals (b) when pumping the fiber inside or outside a cavity.

Fig. 3
Fig. 3

Setup for angle-tuning with VBG.

Fig. 4
Fig. 4

Study on optimal cavity configuration at 25 W launched pump for 65 cm Ce-codoped Yb-fiber with 16 μm core and 150 μm cladding diameter.

Fig. 5
Fig. 5

Comparison experimental and numerical data for 25 W launched pump power.

Fig. 6
Fig. 6

Output spectra of tunable laser, wavelength-locked with four VBGs (997 nm - blue, 1030 nm - green, 1066 nm - red, 1100 nm - cyan).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G 1030 = σ 1030 e σ 980 e G 980 Γ 1030 Γ 915 σ 1030 e σ 980 e σ 980 a σ 915 a . G 915 = 0.22 G 980 Γ 1030 Γ 915 0.7 G 915 ,
α λ q ξ G p Γ λ Γ p σ λ a ( σ λ a + σ λ e ) ( σ p a σ λ e σ p e σ λ a ) 1
d P i ± d z = ± Γ i ( σ i e n 2 σ i a n 1 ) P i ± ± 2 σ i e n 2 A i h c 2 λ i 3 Δ λ α i P i ± n 2 = n t o t ( i N Γ i λ i h c A σ i a ( P i + + P i ) ) ( i N Γ i λ i h c A ( σ i a + σ i e ) ( P i + + P i ) + τ 1 ) 1
P i + ( z = 0 ) = R 1 , i η 1 , i P i ( z = 0 ) P i ( z = L ) = R 2 , i η 2 , i P i + ( z = L ) P λ p + ( z = 0 ) = P p + R 1 , i η 1 , i P i ( z = 0 )
π 4 n 0 M 2 w e 2 λ B Δ λ B λ B > sin θ ,

Metrics