Abstract

We explore the passive optical sorting of plasmon nanoparticles and investigate the optimal wavelength and optimal beam shape of incident field. The condition for optimal wavelength is found by maximising the nanoparticle separation whilst minimising the temperature increase in the system. We then use the force optical eigenmode (FOEi) method to find the beam shape of incident electromagnetic field, maximising the force difference between plasmon nanoparticles. The maximum force difference is found with respect to the whole sorting region. The combination of wavelength and beam shape study is demonstrated for a specific case of gold nanoparticles of radius 40nm and 50nm respectively. The optimum wavelength for this particular situation is found to be above 700nm. The optimum beam shape depends upon the size of sorting region and ranges from plane-wave illumination for infinite sorting region to a field maximising gradient force difference in a single point.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
    [CrossRef]
  2. J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
    [CrossRef] [PubMed]
  3. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [CrossRef] [PubMed]
  4. D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
    [CrossRef] [PubMed]
  5. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26, 5311–5316 (1987).
    [CrossRef] [PubMed]
  6. K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, “Sorting of polystyrene microspheres using a y-branched optical waveguide,” Opt. Express 13, 1–7 (2005).
    [CrossRef] [PubMed]
  7. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).
    [CrossRef] [PubMed]
  8. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002).
    [PubMed]
  9. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
    [CrossRef]
  10. K. Xiao and D. G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010).
    [CrossRef] [PubMed]
  11. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  12. I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
    [CrossRef]
  13. L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
    [CrossRef]
  14. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
    [CrossRef] [PubMed]
  15. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef] [PubMed]
  16. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
    [CrossRef] [PubMed]
  17. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
    [CrossRef]
  18. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
    [CrossRef] [PubMed]
  19. Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
    [CrossRef]
  20. M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
    [CrossRef] [PubMed]
  21. A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
    [CrossRef] [PubMed]
  22. R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
    [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).
  24. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  25. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef] [PubMed]
  26. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
    [CrossRef]

2011

2010

K. Xiao and D. G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

2009

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

2008

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

2007

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef] [PubMed]

R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
[CrossRef]

2006

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
[CrossRef] [PubMed]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).
[CrossRef] [PubMed]

2005

K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, “Sorting of polystyrene microspheres using a y-branched optical waveguide,” Opt. Express 13, 1–7 (2005).
[CrossRef] [PubMed]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

2004

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

2003

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

2002

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002).
[PubMed]

1999

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
[CrossRef] [PubMed]

1994

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

1987

1972

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Anderson, M. T.

D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
[CrossRef] [PubMed]

Badenes, G.

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Baumgartl, J.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Bryant, P. E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Buican, T. N.

Chapin, S. C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cizmar, T.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Crissman, H. A.

Daria, V. R.

Dholakia, K.

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef] [PubMed]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef] [PubMed]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Dufresne, E. R.

Eriksen, R. L.

Feldmann, J.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Galbraith, D. W.

D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
[CrossRef] [PubMed]

Garces-Chavez, V.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Germain, V.

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Gluckstad, J.

Grier, D. G.

K. Xiao and D. G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

Grujic, K.

Gu, M.

Gunn-Moore, F. J.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Heindl, D.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Helleso, O. G.

Herzenberg, L. A.

D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
[CrossRef] [PubMed]

Hole, J. P.

Hrelescu, C.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Klar, T. A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Korda, P. T.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

Kosmeier, S.

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Krauss, T. F.

Kuriakose, S.

Kurzinger, K.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Ladavac, K.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

MacDonald, M.

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Marchington, R. F.

Martin, J. C.

Mazilu, M.

Milne, G.

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef] [PubMed]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Nichtl, A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Nieto-Vesperinas, M.

R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
[CrossRef] [PubMed]

Ong, L. S.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Papagiakoumou, E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Parak, W. J.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Paterson, L.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
[CrossRef] [PubMed]

Ramos-Garcia, R.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Raschke, G.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Reece, P. J.

Rhodes, D.

Ricardez-Vargas, I.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Riches, A. C.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Rodrigo, P. J.

Rodriguez-Montero, P.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Salzman, G. C.

Sery, M.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Sibbett, W.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Siler, M.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Smyth, M. J.

Sonnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Sperling, R. A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Stehr, J.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Stewart, C. C.

Sun, Y. Y.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Tatarkova, S. A.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Taylor, M. B.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Wilkinson, J. S.

Wunderlich, M.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Xiao, K.

K. Xiao and D. G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

Yuan, X. C.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Zelenina, A. S.

Zelenina, S.

R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
[CrossRef]

Zemanek, P.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A: Mater. Sci. Process.

R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A: Mater. Sci. Process. 89, 233–239 (2007).
[CrossRef]

Appl. Phys. Lett.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Methods Cell Biol.

D. W. Galbraith, M. T. Anderson, and L. A. Herzenberg, “Flow cytometric analysis and facs sorting of cells based on gfp accumulation,” Methods Cell Biol. 58, 315–341 (1999).
[CrossRef] [PubMed]

Nano Lett.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond dna melting analysis,” Nano Lett. 8, 619–623 (2008).
[CrossRef] [PubMed]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Phys. Rev. Lett.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

K. Xiao and D. G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

Science

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

We look for an amplitude and phase a of a given set of plane waves such that the force F (1,0) is maximised.

Fig. 2
Fig. 2

a) Scattering Qsca and absorption Qabs efficiencies calculated using Mie theory for 3D nanoparticle of r 1 = 50nm and the corresponding 2D values converted to 3D equivalents. Nanoparticle is in water with nw = 1.33; b) Forces and their respective difference ΔF acting on r 1 = 50nm and r 2 = 40nm gold nanoparticles. Forces are parallel to the substrate plane. The illumination is a plane-wave at near critical angle of θ = 64° with power density corresponding to 1mW/μm2; c) Speed difference Δv and temperature increase ΔT for the same illumination as in b); d) Speed difference normalised with respect to the temperature increase in the system.

Fig. 3
Fig. 3

Field optimising the force difference ΔF for gold nanoparticles of radius r 1 = 50nm and r 2 = 40nm in a single point x = 0 with corresponding amplitude |aμ | and phase arg(aμ ) for each plane wave from angular spectrum. The |aμ | and arg(aμ ) correspond to the pattern at the back focal plane of the objective. This illumination of the back focal plane forms a very strong field gradient in +x direction in the focal plane, which maximises the force difference for our testing particles. Note that scattering from the particles is not included.

Fig. 4
Fig. 4

Field optimising the force difference ΔF for l = 500nm. The phase of aμ is plotted in the region where it is well-defined. Notice that the field is focused into the ROI. The left edge of the back focal plane contributes the most to the optimised field in the focal plane. The phase at the back focal plane is slightly modulated as well.

Fig. 5
Fig. 5

Field optimising the force difference ΔF for l = 5μm. The shape of the beam at the back-focal plane of the objective has a narrow distribution of amplitude in the proximity of critical angle.

Fig. 6
Fig. 6

Field optimising the force difference ΔF for l → 100mm. As the phase of aμ for zero amplitude |aμ | is not well defined, it is not displayed in the graph. The optimum angle plane wave is 64°, which is close to critical angle for given interface.

Fig. 7
Fig. 7

(a) Blue and green points show forces acting on individual particles in optimised field for l = 500nm. Red points show the force difference. The coloured lines show the same but for plane wave illumination optimising the infinite system. (b) The ratio ΔFFpw as a function of ROI size. The dip around l = 14μm is due to k-space discretization of angular spectrum representation. The gain in ΔF is significant in the experimentally interesting region.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E i n c = a μ E i n c μ ,
E = a μ ( E i n c μ + E s c a μ ) = a μ E μ ,
F u = F i u i = C σ i j n j u i d s ,
σ i j = 1 4 [ ɛ 0 ɛ m E i * E j + μ 0 μ m H i * H j + ɛ 0 ɛ m E i E j * + μ 0 μ m H i H j * δ i j ( ɛ 0 ɛ m E k * E k + μ 0 μ m H k * H k ) ] .
σ i j = 1 4 [ ɛ 0 ɛ m ( a μ E μ ) i * ( a ν E ν ) j + μ 0 μ m ( a μ H μ ) i * ( a ν H ν ) j + + ɛ 0 ɛ m ( a ν E ν ) i ( a μ E μ ) j * + μ 0 μ m ( a ν H μ ) i ( a μ H μ ) j * δ i j ( ɛ 0 ɛ m ( a μ E μ ) k * ( a ν E ν ) k + μ 0 μ m ( a μ H μ ) k * ( a ν H ν ) k ) ]
σ i j = ( a μ ) * ( 1 4 [ ɛ 0 ɛ m ( E μ ) i * E j ν + μ 0 μ m ( H μ ) i * H j ν + ɛ 0 ɛ m E i ν ( E μ ) j * + + μ 0 μ m H i ν ( H μ ) j * δ i j ( ɛ 0 ɛ m ( E μ ) k * E k ν + μ 0 μ m ( H μ ) k * H k ν ] ) a ν .
F u = ( a μ ) * [ C ( 1 4 [ ɛ 0 ɛ m ( E μ ) i * E j ν + μ 0 μ m ( H μ ) i * H j ν + ɛ 0 ɛ m E i ν ( E μ ) j * + + μ 0 μ m H i ν ( H μ ) j * δ i j ( ɛ 0 ɛ m ( E μ ) k * E k ν + μ 0 μ m ( H μ ) k * H k ν ) ] n j u i d s ] a ν
F u = a Ma ,
π r 2 d = 4 3 π r 3 d = 4 3 r .
v 3 D = 2 F 2 D 9 π η ,
Δ T = 1 4 π Q 1 + Q 2 κ 0 ( r 1 + r 2 2 ) ,
Δ F = F 1 u F 2 u = a ( M 1 u M 2 u ) a = a D 12 u a .
M μ ν ( x ) = e i k w sin ( θ t μ ) x [ M μ ν ] e i k w sin ( θ t ν ) x
Δ F ( l ) = ( a μ ) * [ 1 2 l l l e i k w x ( sin ( θ t μ ) sin ( θ t ν ) ) d x ] ( M 1 u M 2 u ) μ ν a ν = ( a μ ) * [ sinc ( k w l ( sin ( θ t μ ) sin ( θ t ν ) ) ( M 1 u M 2 u ) μ ν ] a ν = a R 12 u ( l ) a .

Metrics