Abstract

A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27Hz and 70Hz) into one signal to be used to actuate the mirror.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for Lightwave Communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  2. C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith , 7(2), 021003 (2008).
    [CrossRef]
  3. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [CrossRef]
  4. B. T. Liao, H. H. Shen, H. H. Liao, and Y. J. Yang, “A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators,” Opt. Express 17(22), 19919–19925 (2009).
    [CrossRef] [PubMed]
  5. P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
    [CrossRef]
  6. H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
    [CrossRef]
  7. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
    [CrossRef]
  8. K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
    [CrossRef]
  9. H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
    [CrossRef]
  10. C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
    [CrossRef]
  11. S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
    [CrossRef]
  12. T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
    [CrossRef]
  13. C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
    [CrossRef]
  14. T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
    [CrossRef]
  15. F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
    [CrossRef]
  16. Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
    [CrossRef]
  17. M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A laser display using a PZT-actuated 2D optical scanner,” in Optical MEMS and Their Applications Conference, 2005. IEEE/LEOS International Conference on(2005), pp. 9–10.
  18. M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A Combination of Fast Resonant Mode and Slow Static Deflection of SOI-PZT Actuators for MEMS Image Projection Display,” IEEE/LEOS International Conference on Optical MEMS and Their Applications, 25–26 (2006).
  19. M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” IEEE 20th International Conference on Micro Electro Mechanical Systems, 699–702 (2007).
  20. T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
    [CrossRef]
  21. W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
    [CrossRef] [PubMed]
  22. J. G. Smits and W. Choi, “The constituent equations of piezoelectric heterogeneous bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991).
    [CrossRef] [PubMed]
  23. T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
    [CrossRef]
  24. K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
    [CrossRef]
  25. T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
    [CrossRef]
  26. T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
    [CrossRef]
  27. K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
    [CrossRef]
  28. K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
    [CrossRef]
  29. P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
    [CrossRef]
  30. D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
    [CrossRef]

2011

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

2010

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
[CrossRef]

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
[CrossRef]

2009

B. T. Liao, H. H. Shen, H. H. Liao, and Y. J. Yang, “A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators,” Opt. Express 17(22), 19919–19925 (2009).
[CrossRef] [PubMed]

P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
[CrossRef]

2008

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith , 7(2), 021003 (2008).
[CrossRef]

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

2007

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

2006

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for Lightwave Communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
[CrossRef]

2005

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
[CrossRef]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

2003

H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
[CrossRef]

1999

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
[CrossRef]

1996

T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
[CrossRef]

1991

W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
[CrossRef] [PubMed]

J. G. Smits and W. Choi, “The constituent equations of piezoelectric heterogeneous bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991).
[CrossRef] [PubMed]

Ahn, C. H.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Akamatsu, M.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

Briand, D.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Brown, D.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Bu, J.-U.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Choi, M.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Choi, W.

J. G. Smits and W. Choi, “The constituent equations of piezoelectric heterogeneous bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991).
[CrossRef] [PubMed]

Christensen, D.

K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
[CrossRef]

de Rooij, N. F.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Defay, E.

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Delaye, M. T.

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Divoux, C.

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Ergeneman, O.

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

Fang, W.

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

Fedder, G. K.

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
[CrossRef]

Filhol, F.

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Ford, J. E.

Gariglio, S.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Gilgunn, P. J.

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

Glumac, D. E.

W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
[CrossRef] [PubMed]

Guy, F.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Hsiao, F.-L.

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

Ichiki, M.

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

Iijima, T.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

Isarakorn, D.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Iseki, T.

T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
[CrossRef]

Isikman, S. O.

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

Itoh, T.

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
[CrossRef]

T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
[CrossRef]

Janphuang, P.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Ji, C.-H.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Jongbaeg, K.

K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
[CrossRef]

Kim, S.-C.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Kobayashi, T.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
[CrossRef]

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

Koh, K. H.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
[CrossRef]

Kondou, R.

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

Lee, C.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
[CrossRef]

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith , 7(2), 021003 (2008).
[CrossRef]

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
[CrossRef]

T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
[CrossRef]

Lee, S. T.

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

Liao, B. T.

Liao, H. H.

Lin, L.

K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
[CrossRef]

Liu, J.

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

Maeda, R.

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

Masuda, T.

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

Montague, T.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Muralt, P.

P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
[CrossRef]

Nakamura, K.

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

Nam, H.-J.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Okada, H.

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

Okumura, M.

T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
[CrossRef]

Pan, Y.

H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
[CrossRef]

Polcawich, R. G.

P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
[CrossRef]

Polla, D. L.

W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
[CrossRef] [PubMed]

Reiner, J. W.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Robbins, W. P.

W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
[CrossRef] [PubMed]

Sambri, A.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Sarkar, N.

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

Sawada, R.

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

Shen, H. H.

Smits, J. G.

J. G. Smits and W. Choi, “The constituent equations of piezoelectric heterogeneous bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991).
[CrossRef] [PubMed]

Solgaard, O.

Song, K.-C.

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

Sprague, R.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Suga, T.

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
[CrossRef]

T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
[CrossRef]

Sugawara, T.

T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
[CrossRef]

Tang, T.-L.

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

Tani, M.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

Toshiyoshi, H.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

Triscone, J. M.

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

Trolier-McKinstry, S.

P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
[CrossRef]

Tsaur, J.

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

Urey, H.

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

Wu, M. C.

Xie, H.

H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
[CrossRef]

Xie, J.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

Yalcinkaya, A. D.

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Yang, H.-A.

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

Yang, Y. J.

Yasuda, Y.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

Yeh, J. A.

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith , 7(2), 021003 (2008).
[CrossRef]

Yu, A.

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

Zinck, C.

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

Appl. Phys. Lett.

T. Itoh, C. Lee, and T. Suga, “Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy,” Appl. Phys. Lett. 69(14), 2036–2038 (1996).
[CrossRef]

T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, “Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O[sub 3] thin film,” Appl. Phys. Lett. 90(18), 183514 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and Characterization of Soft Magnetic Film Actuated 2-D Scanners,” IEEE J. Sel. Top. Quantum Electron. 13(2), 283–289 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Jongbaeg, D. Christensen, and L. Lin, “Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives,” IEEE Photon. Technol. Lett. 17(11), 2307–2309 (2005).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

W. P. Robbins, D. L. Polla, and D. E. Glumac, “High-displacement piezoelectric actuator utilizing a meander-line geometry I. Experimental characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(5), 454–460 (1991).
[CrossRef] [PubMed]

J. G. Smits and W. Choi, “The constituent equations of piezoelectric heterogeneous bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991).
[CrossRef] [PubMed]

Integr. Ferroelectr.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2d-Optical Micro Scanners with Pzt Thick Films,” Integr. Ferroelectr. 76(1), 81–91 (2005).
[CrossRef]

J. Lightwave Technol.

J. Micro/Nanolith

C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith , 7(2), 021003 (2008).
[CrossRef]

J. Microelectromech. Syst.

H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force,” J. Microelectromech. Syst. 16(3), 511–520 (2007).
[CrossRef]

C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam, “Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” J. Microelectromech. Syst. 16(4), 989–996 (2007).
[CrossRef]

P. J. Gilgunn, J. Liu, N. Sarkar, and G. K. Fedder, “CMOS-MEMS Lateral Electrothermal Actuators,” J. Microelectromech. Syst. 17(1), 103–114 (2008).
[CrossRef]

H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” J. Microelectromech. Syst. 12(4), 450–457 (2003).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

K. H. Koh, C. Lee, and T. Kobayashi, “A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects,” J. Microelectromech. Syst. 19(6), 1370–1379 (2010).
[CrossRef]

J. Micromech. Microeng.

T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda, “Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb(Zr,Ti)O-3 thin film,” J. Micromech. Microeng. 18(3), 035007031–035007035 (2008).
[CrossRef]

K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng. 21(7), 075001 (2011).
[CrossRef]

D. Isarakorn, A. Sambri, P. Janphuang, D. Briand, S. Gariglio, J. M. Triscone, F. Guy, J. W. Reiner, C. H. Ahn, and N. F. de Rooij, “Epitaxial piezoelectric MEMS on silicon,” J. Micromech. Microeng. 20(5), 055008 (2010).
[CrossRef]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

MRS Bull.

P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting,” MRS Bull. 34(09), 658–664 (2009).
[CrossRef]

Opt. Express

Sens. Actuators A Phys.

T. Iseki, M. Okumura, and T. Sugawara, “Shrinking design of a MEMS optical scanner having four torsion beams and arms,” Sens. Actuators A Phys. 164(1-2), 95–106 (2010).
[CrossRef]

C. Lee, T. Itoh, and T. Suga, “Self-excited piezoelectric PZT microcantilevers for dynamic SFM - with inherent sensing and actuating capabilities,” Sens. Actuators A Phys. 72(2), 179–188 (1999).
[CrossRef]

F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sens. Actuators A Phys. 123–24, 483–489 (2005).
[CrossRef]

K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys. 162(2), 336–347 (2010).
[CrossRef]

Smart Mater. Struct.

T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, “A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O-3 thin film array electrically connected in series,” Smart Mater. Struct. 19(10), 105030 (2010).
[CrossRef]

Thin Solid Films

T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, “Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition,” Thin Solid Films 489(1-2), 74–78 (2005).
[CrossRef]

Other

M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A laser display using a PZT-actuated 2D optical scanner,” in Optical MEMS and Their Applications Conference, 2005. IEEE/LEOS International Conference on(2005), pp. 9–10.

M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A Combination of Fast Resonant Mode and Slow Static Deflection of SOI-PZT Actuators for MEMS Image Projection Display,” IEEE/LEOS International Conference on Optical MEMS and Their Applications, 25–26 (2006).

M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” IEEE 20th International Conference on Micro Electro Mechanical Systems, 699–702 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic drawing of 2-D scanning mirror actuated by S-shaped PZT actuator. Bending and torsional mode occur when the device is excited at their resonant frequencies respectively. (b) Top view of mirror device and the respective dimensions of the structures.

Fig. 2
Fig. 2

Finite element modal analysis for the two different mirror designs using simulation software ABAQUS. The 1st design simulated is a mirror with S-shaped actuator design during (a) bending mode, with resonant frequency at 34.9Hz and a maximum Z-displacement of 1μm. (b) torsional mode, with resonant frequency of 72.1Hz and a maximum Z-displacement of 0.9μm. 2nd design simulated is a mirror with straight cantilever actuator design during (c) bending mode, with resonant frequency of 35.3Hz and a maximum Z-displacement of 1μm (d) torsional mode, with resonant frequency of 128Hz and a maximum Z-displacement of 0.36μm.

Fig. 3
Fig. 3

Microfabrication process flow for making the S-shaped PZT actuator and the mirror.

Fig. 4
Fig. 4

Close-up photo showing the packaged MEMS mirror on a dual in-line package (DIP). The bond wires connect the bond pads on the device to the external pins of the DIP.

Fig. 5
Fig. 5

Experimental setup for static and dynamic characterization of device where θ and 2θ denote the mechanical and optical deflection angles respectively.

Fig. 6
Fig. 6

(a) Measured optical deflection angle versus DC driving voltage applied to PZT actuator. (b) Maximum displacement of actuator tip versus DC driving voltage applied to PZT actuator derived from experimental result and theoretical mathematical analysis.

Fig. 7
Fig. 7

(a) A semi log plot illustrating the spectrum of optical deflection angle versus ac actuation frequency at 0.5Vpp for bending and torsional modes. (b) Measured optical deflection angle versus ac voltage peak-to-peak for bending and torsional modes. Bending and torsional mode occurs when the device is excited independently with ac signals of 27Hz and 70Hz respectively.

Fig. 8
Fig. 8

Schematic diagram illustrating the biasing configuration to produce 2-D scanning pattern. Two sinusoidal waveforms of different frequencies are inputted into a summing amplifier. VB and VT denote the peak-to-peak voltage for the ac signal frequencies 27Hz and 70Hz respectively. The output of the amplifier is connected to the device.

Fig. 9
Fig. 9

Waveform obtained from different voltage output (a) Red dotted and blue solid curve show the respective output of the 2 functional generators when VB and VT are 0.5Vpp. (b) Red dotted curve shows the resultant output of the summing amplifier Vout when VB and VT are 0.5Vpp. Blue solid curve shows the fitting curve derived from (11).

Fig. 10
Fig. 10

The waveform obtained from Vout and captured by the oscilloscope (a) VB = 3Vpp, VT = 0Vpp (b)VB = 0.8Vpp, VT = 0.3Vpp (c) VB = 0.5Vpp, VT = 0.5Vpp (d) VB = 0.3Vpp, VT = 1Vpp.

Fig. 11
Fig. 11

2-D Lissajous scanning patterns obtained when various combinations of sinusoidal VB and VT were supplied by the two function generators and superimposed by the summing amplifier. (a) VB = 3Vpp, VT = 0Vpp (b)VB = 0.8Vpp, VT = 0.3Vpp (c) VB = 0.5Vpp, VT = 0.5Vpp (d) VB = 0.3Vpp, VT = 1Vpp. The experimental conditions of the scanning line obtained in (a) were different from those obtained in (b)-(d) so as to accommodate the entire scanning line on the ruler scale.

Tables (1)

Tables Icon

Table 1 DIMENSIONS of 2-D MEMS Scanning Mirror

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ n = 3 A B K L n 2 V d 31
A = S S i S P Z T ( S P Z T t S i + S S i t P Z T )
B = t S i ( t S i + t P Z T ) S P Z T t S i + S S i t P Z T
K = ( S S i ) 2 ( t P Z T ) 4 + 4 S S i S P Z T t S i ( t P Z T ) 2 + 6 S S i S P Z T ( t S i ) 2 ( t P Z T ) 2 + 4 S S i S P Z T t P Z T ( t S i ) 2 + ( S P Z T ) 2 ( t S i ) 4
δ t h e o r e t i c a l = n = 1 7 δ n = 3 A B K V d 31 n = 1 7 ( L n ) 2
V B = 0.25 sin [ ω B ( t + t 1 ) ]
V T = 0.25 sin [ ω T ( t + t 1 ) ]
V o u t = [ 0.25 sin [ ω B ( t + t 1 ) ] + 0.25 sin [ ω T ( t + t 1 ) ] ]

Metrics