Abstract

Mutual diffusion dynamic model with nonlocal response was proposed to describe the grating formation in SiO2 nanopraticles dispersed PQ-PMMA photopolymer. The mutual-diffusion physical mechanism between PQ and SiO2 nanoparticles is analyzed. The grating formation kinetics and dynamic redistribution of components is simulated by introducing the nonlocal effect. In experiment the dark enhancement of grating after short exposure and the photopolymerization under consecutive exposure are measured. The improvement of SiO2 nanoparticles for the holographic properties is achieved quantitatively. Finally the comparison of theoretical and experimental results is presented for understanding the mutual-diffusion characteristics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83(3), 410–412 (2003).
    [CrossRef]
  2. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43(10), 2125–2129 (2004).
    [CrossRef] [PubMed]
  3. W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
    [CrossRef]
  4. S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009).
    [CrossRef] [PubMed]
  5. A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
    [CrossRef] [PubMed]
  6. L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
    [CrossRef]
  7. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
    [CrossRef]
  8. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [CrossRef] [PubMed]
  9. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
    [CrossRef] [PubMed]
  10. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007).
    [CrossRef] [PubMed]
  11. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
    [CrossRef]
  12. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [CrossRef] [PubMed]
  13. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
    [CrossRef]
  14. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
    [CrossRef]
  15. J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007).
    [CrossRef]
  16. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
    [CrossRef] [PubMed]
  17. J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
    [CrossRef]
  18. S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
    [CrossRef]
  19. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
    [CrossRef]
  20. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
    [CrossRef]
  21. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [CrossRef]
  22. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef] [PubMed]
  23. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  24. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
    [CrossRef] [PubMed]
  25. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16(15), 11253–11258 (2008).
    [CrossRef] [PubMed]
  26. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).
  27. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46(27), 6809–6814 (2007).
    [CrossRef] [PubMed]

2011 (1)

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

2010 (5)

2009 (6)

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009).
[CrossRef] [PubMed]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

2008 (2)

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16(15), 11253–11258 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (1)

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83(3), 410–412 (2003).
[CrossRef]

2002 (1)

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

2000 (3)

1998 (1)

1996 (1)

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Babeva, T.

Barbastathis, G.

Bartsch, E.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

Braun, P. V.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Bunning, T. J.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Busbee, J. D.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Butovskaya, G. V.

Castillo, J. E.

J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007).
[CrossRef]

Chechik, V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Chen, W. Z.

Choi, Y.-S.

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Fernández, E.

Gallego, S.

Gleeson, M. R.

Goldenberg, L. M.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Helliwell, P.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Heo, Y.

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Hoff, D.

Hsu, K. Y.

Jeong, Y. C.

S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009).
[CrossRef] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[CrossRef]

Jeong, Y.-C.

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Jiang, Y.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[CrossRef]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[CrossRef] [PubMed]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Juhl, A. T.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Karpov, G. M.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
[CrossRef]

Kashin, O.

Kim, S. I.

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Kim, W. S.

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[CrossRef]

Kostuk, R. K.

Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
[CrossRef] [PubMed]

J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007).
[CrossRef]

Koval, J. J.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Kowarschik, R.

Krul, L. P.

Lawrence, J. R.

Lee, J.

Lee, S.

S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009).
[CrossRef] [PubMed]

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Lemeshko, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
[CrossRef]

Li, X.

Lin, S. H.

Liu, H.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[CrossRef]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[CrossRef] [PubMed]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Luo, S.

Luo, Y.

Mackey, D.

Marini, S.

Márquez, A.

Martin, S.

Matusevich, A.

Matusevich, V.

Matusevich, Y. I.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Murashko, E. A.

Natarajan, L. V.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Naydenova, I.

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83(3), 410–412 (2003).
[CrossRef]

Obukhovsky, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
[CrossRef]

Ortuño, M.

Park, J. K.

S. Lee, Y. C. Jeong, J. Lee, and J. K. Park, “Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage,” Opt. Lett. 34(20), 3095–3097 (2009).
[CrossRef] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[CrossRef]

Park, J.-K.

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

Pascual, I.

Psaltis, D.

Russo, J. M.

Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
[CrossRef] [PubMed]

J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007).
[CrossRef]

Sakhno, O. V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Sedunov, Yu. N.

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).

Sheridan, J. T.

Smirnova, T. N.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
[CrossRef]

Solomatine, I.

Steckman, G. J.

Stumpe, J.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

Sun, X.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[CrossRef]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[CrossRef] [PubMed]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Suzuki, N.

Toal, V.

Tolstik, E.

Tomita, Y.

Tondiglia, V. P.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Tongdilia, V. P.

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Vaia, R. A.

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Veniaminov, A. V.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).

Wang, J.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

Whang, W. T.

Yu, D.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[CrossRef]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[CrossRef] [PubMed]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

yuhl, A. T.

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Zhou, G.

ACS Nano (1)

A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, and P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. D. Busbee, A. T. yuhl, L. V. Natarajan, V. P. Tongdilia, T. J. Bunning, R. A. Vaia, and P. V. Braun, “SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer dispersed liquid crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(36), 3659–3662 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83(3), 410–412 (2003).
[CrossRef]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[CrossRef]

Chem. Mater. (1)

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[CrossRef]

J. Mater. Chem. (1)

S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[CrossRef]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as a method of holographic recording in photoformers,” Opt. Commun. 174(5-6), 391–404 (2000).
[CrossRef]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[CrossRef]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Polym. Sci. Ser. A (1)

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): holographic measurements,” Polym. Sci. Ser. A 38(1), 56–63 (1996).

Proc. SPIE (1)

J. M. Russo, J. E. Castillo, and R. K. Kostuk, “Effect of silicon dioxide nanoparticles on the characteristics of PQ/PMMA holographic filters,” Proc. SPIE 6653, 66530D, 66530D–9 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Dark enhancement of diffraction efficiency. The insert is evolution of diffraction efficiency during exposure time of 50s. The solid line is fitting curve using exponential function. (b) Temporal evolution of diffraction efficiency under consecutive exposure.

Fig. 2
Fig. 2

Spatial and temporal evolution of components concentrations under consecutive exposure. (a) PQ molecules, (b) Photoproducts, and (c) SiO2 nanoparticles. The colorbars were component concentrations with mol/m3.

Fig. 3
Fig. 3

Comparison of theoretical and experimental results with 39.6 and 135.8mW/cm2 intensities. The symbols are experimental data and the solid lines are simulation. The error from accuracy of experiments is around 5%.

Tables (2)

Tables Icon

Table 1 Refractive Index of Components Inside the Sample

Tables Icon

Table 2 Maximum of Diffraction Efficiency and its Rising Time Constants under Consecutive Exposure

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

M P Q + M S i O 2 + M p h o t o p r o d u c t + M m a t r i x = 1
j P Q , S i O 2 = D 0 [ M P Q , S i O 2 ( x , t ) M S i O 2 , P Q ( x , t ) M S i O 2 , P Q ( x , t ) M P Q , S i O 2 ( x , t ) ]
M P Q , S i O 2 ( x , t ) / t + div  j P Q , S i O 2 = F
M P Q , S i O 2 = V P Q , S i O 2 / V a l l = [ PQ,SiO 2 ] m ¯ P Q , S i O 2 / V a l l ρ P Q , S i O 2 [ PQ,SiO 2 ]
[ PQ ] ( x , t ) t = D 0 ( [ SiO 2 ] ( x , t ) 2 [ PQ ] ( x , t ) x 2 [ PQ ] ( x , t ) 2 [ SiO 2 ] ( x , t ) x 2 ) + R ( x , x ) F ( x , t ) [ PQ ] ( x , t ) d x
[ SiO 2 ] ( x , t ) t = D 0 ( [ PQ ] ( x , t ) 2 [ SiO 2 ] ( x , t ) x 2 [ SiO 2 ] ( x , t ) 2 [ PQ ] ( x , t ) x 2 )
[ Photoproduct ] ( x , t ) = 0 t + R ( x , x ) F 0 ( x , t ) [ PQ ] ( x , t ) d x d t
Δ n ( t ) = C P Δ [ Photoproduct ] ( t ) + C S i O 2 Δ [ SiO 2 ] ( t ) + C P Q Δ [ PQ ] ( t ) exp ( i ϕ )
C i = C [ ( n i 2 1 ) / ( n i 2 + 2 ) ( n b 2 1 ) / ( n b 2 + 2 ) ]

Metrics