Abstract

We demonstrate multiple bandgap integration on the hybrid silicon platform using quantum well intermixing. A broadband DFB laser array and a DFB-EAM array are realized on a single chip using four bandgaps defined by ion implantation enhanced disordering. The broadband laser array uses two bandgaps with 17 nm blue shift to compensate for gain roll-off while the integrated DFB-EAMs use the as-grown bandgap for optical gain and a 30 nm blue shifted bandgap for modulation. The multi-channel DFB array includes 13 lasers with >90 nm gain-bandwidth. The transponder includes four DFB-EAMs with14 dB DC extinction at 4 V bias.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
    [CrossRef]
  2. H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated hybrid silicon triplexer,” Opt. Express 18(23), 23891–23899 (2010).
    [CrossRef] [PubMed]
  3. M. N. Sysak, J. O. Anthes, J. E. Bowers, O. Raday, and R. Jones, “Integration of hybrid silicon lasers and electroabsorption modulators,” Opt. Express 16(17), 12478–12486 (2008).
    [CrossRef] [PubMed]
  4. E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
    [CrossRef]
  5. G. Lin and C. Lee, “Comparison of 1300 nm quantum well lasers using different material systems,” Opt. Quantum Electron. 34(12), 1191–1200 (2002).
    [CrossRef]
  6. D. Liang and J. Bowers, “Highly efficient vertical out gassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008).
    [CrossRef]
  7. J. W. Raring, “Advanced InP based monolithic integration using quantum well intermixing and MOCVD regrowth,” Ph. D dissertation, Department of Electrical and Computer Engineering, University of California, Santa Barbara. June 2006.
  8. Y. H. Kuo, H. W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 9936–9941 (2008).
    [CrossRef] [PubMed]
  9. Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
    [PubMed]

2010

2008

M. N. Sysak, J. O. Anthes, J. E. Bowers, O. Raday, and R. Jones, “Integration of hybrid silicon lasers and electroabsorption modulators,” Opt. Express 16(17), 12478–12486 (2008).
[CrossRef] [PubMed]

D. Liang and J. Bowers, “Highly efficient vertical out gassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008).
[CrossRef]

Y. H. Kuo, H. W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 9936–9941 (2008).
[CrossRef] [PubMed]

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

2005

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

2002

G. Lin and C. Lee, “Comparison of 1300 nm quantum well lasers using different material systems,” Opt. Quantum Electron. 34(12), 1191–1200 (2002).
[CrossRef]

Anthes, J. O.

Barkai, A.

Bowers, J.

D. Liang and J. Bowers, “Highly efficient vertical out gassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008).
[CrossRef]

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Bowers, J. E.

Chang, H. H.

Chang, H.-H.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Chen, H.

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Chen, H. W.

Chen, H.-W.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Coldren, L.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Fang, A. W.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Jain, S.

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Jones, R.

Koch, B. R.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Lal, V.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Lee, C.

G. Lin and C. Lee, “Comparison of 1300 nm quantum well lasers using different material systems,” Opt. Quantum Electron. 34(12), 1191–1200 (2002).
[CrossRef]

Liang, D.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

D. Liang and J. Bowers, “Highly efficient vertical out gassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008).
[CrossRef]

Lin, G.

G. Lin and C. Lee, “Comparison of 1300 nm quantum well lasers using different material systems,” Opt. Quantum Electron. 34(12), 1191–1200 (2002).
[CrossRef]

Masanovic, M.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Morrison, G.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Park, H.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Peters, J.

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Raday, O.

Raring, J.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Skogen, E.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Sysak, M. N.

M. N. Sysak, J. O. Anthes, J. E. Bowers, O. Raday, and R. Jones, “Integration of hybrid silicon lasers and electroabsorption modulators,” Opt. Express 16(17), 12478–12486 (2008).
[CrossRef] [PubMed]

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

Tang, Y.

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Wang, C.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Westergren, U.

Y. Tang, H. Chen, S. Jain, J. Peters, U. Westergren, and J. Bowers, “50 Gb/s hybrid silicon travelling-wave electroabsorption modulator,” Opt. Express (to be published).
[PubMed]

Adv. Opt. Technol.

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic integration on the hybrid silicon evanescent device platform,” Adv. Opt. Technol. 2008, 682978 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Skogen, J. Raring, G. Morrison, C. Wang, V. Lal, M. Masanovic, and L. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

D. Liang and J. Bowers, “Highly efficient vertical out gassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

G. Lin and C. Lee, “Comparison of 1300 nm quantum well lasers using different material systems,” Opt. Quantum Electron. 34(12), 1191–1200 (2002).
[CrossRef]

Other

J. W. Raring, “Advanced InP based monolithic integration using quantum well intermixing and MOCVD regrowth,” Ph. D dissertation, Department of Electrical and Computer Engineering, University of California, Santa Barbara. June 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Overview of ion implantation based quantum well intermixing process used for the hybrid silicon platform. Four bandgap regions defined across the wafer are numbered 1, 2, 3 and 4. (a) Phosphorous ion implant into InP buffer with SiONx mask to preserve as-grown bandgap 1. (b) Diffusion of vacancies through quantum wells and barriers during RTA to create bandgap 2. (c) Selective removal of InP buffer layer to stop intermixing. (d) Diffusion of vacancies through QW structure for bandgap 3. (e) Selective removal of InP buffer and anneal for bandgap 4. (f) Blanket removal of InP buffer layer to planarize surface.

Fig. 2
Fig. 2

(a) Normalized PL spectra obtained from four bandgaps across the wafer. (b) PL shift as a function of RTA time for four bandgaps across the wafer.

Fig. 3
Fig. 3

Schematic of patterned (a) III-V and (b) SOI wafer after pre-bond fabrication steps. Four bandgaps defined across III-V wafer are labeled 1, 2, 3 and 4 representing two laser bandgaps, an EAM and passive bandgap respectively. III-V wafer patterns have a stripe-like geometry in vertical direction and SOI waveguides are continuous in the horizontal direction.

Fig. 4
Fig. 4

Schematic top view of integrated DFB-EAM transmitter with backside photodetector. Devices are interconnected with isolation and taper sections.

Fig. 5
Fig. 5

Schematic cross section of (a). Laser/photodetector section (bandgap 1, PL = 1357 nm, bandgap 2, PL = 1340 nm). (b) EAM with narrow 4 µm mesa (bandgap 3, PL = 1327 nm) (c). Isolation section (bandgap 4, PL = 1304 nm).

Fig. 6
Fig. 6

Schematic side view of integrated DFB-EAM transmitter with backside photodetector. Three bandgaps used are numbered 1, 3 and 4 (laser, EAM and passive) and depicted with different shades for the quantum well region. Gratings are defined over inner 100/150 µm for 300/500 µm long DFB lasers.

Fig. 7
Fig. 7

Top view of fabricated chip. Four bandgaps regions defined across the wafer are marked. To the left is a zoomed in image of 15 DFB laser array with varying grating pitch. Similar laser arrays are defined using laser bandgaps (#1 & #2). Integrated DFB-EAM array are on the right edge of the chip and utilize the EAM bandgap (#3) for modulation.

Fig. 8
Fig. 8

(a) CW LI characteristics of 500 µm DFBs measured using the on-chip backside photodetector, assuming ideal conversion. (b) Variation of threshold current with lasing wavelength of 300 µm long DFBs.

Fig. 9
Fig. 9

Collective spectra of thirteen DFB lasers selected from lasers over bandgap A and B with 40-70 mA threshold current.

Fig. 10
Fig. 10

(a) Measured DC extinction ratio for integrated EA modulators. 14 dB extinction is achieved with −4 V bias for 30 nm detuning. (b) Small signal bandwidth measurement results for the integrated EA modulators. Bias voltages are −1, −3, and −5 V as indicated.

Metrics