Abstract

Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulator-based photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB (GUWB) generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  3. C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, “Direct transmission of ultra wide band signals using single mode radio-over-fiber system,” Proc. 2005 Asia-Pacific Microw. Conf. (APMC 2005) 1–5, 1315–1317 (2005).
  4. S. L. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  5. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
    [CrossRef]
  6. Y. Le Guennec, A. Pizzinat, S. Meyer, B. Charboonnier, P. Lombard, M. Lourdiane, B. Cabon, C. Algani, A.-L. Billabert, M. Terre, C. Rurnelhard, J.-L. Polleux, H. Jacquinot, S. Bories, and C. Sillans, “Low-cost transparent radio-over-fiber system for in-building distribution of UWB signals,” J. Lightwave Technol. 27(14), 2649–2657 (2009).
    [CrossRef]
  7. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
    [CrossRef]
  8. S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
    [CrossRef]
  9. M. Abtahi, M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “All-optical 500-Mb/s UWB transceiver: an experimental demonstration,” J. Lightwave Technol. 26(15), 2795–2802 (2008).
    [CrossRef]
  10. X. B. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
    [CrossRef] [PubMed]
  11. S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
  12. J. J. Dong, X. L. Zhang, J. Xu, D. X. Huang, S. N. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  13. S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
    [CrossRef] [PubMed]
  14. S. G. Wang, H. W. Chen, M. Xin, M. H. Chen, and S. Z. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009).
    [CrossRef] [PubMed]
  15. X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18(4), 3643–3648 (2010).
    [CrossRef] [PubMed]
  16. Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
    [CrossRef] [PubMed]
  17. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
    [CrossRef]
  18. J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
    [CrossRef]
  19. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]

2010

S. L. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18(4), 3643–3648 (2010).
[CrossRef] [PubMed]

2009

J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

X. B. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
[CrossRef] [PubMed]

S. G. Wang, H. W. Chen, M. Xin, M. H. Chen, and S. Z. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009).
[CrossRef] [PubMed]

Y. Le Guennec, A. Pizzinat, S. Meyer, B. Charboonnier, P. Lombard, M. Lourdiane, B. Cabon, C. Algani, A.-L. Billabert, M. Terre, C. Rurnelhard, J.-L. Polleux, H. Jacquinot, S. Bories, and C. Sillans, “Low-cost transparent radio-over-fiber system for in-building distribution of UWB signals,” J. Lightwave Technol. 27(14), 2649–2657 (2009).
[CrossRef]

2008

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

M. Abtahi, M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “All-optical 500-Mb/s UWB transceiver: an experimental demonstration,” J. Lightwave Technol. 26(15), 2795–2802 (2008).
[CrossRef]

2007

2003

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Abtahi, M.

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Algani, C.

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Ben Ezra, Y.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Billabert, A.-L.

Blaaberg, S.

Bolea, M.

Bories, S.

Braidwood Gibbon, T.

Cabon, B.

Capmany, J.

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Charboonnier, B.

Chen, H.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

Chen, H. W.

Chen, M.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

Chen, M. H.

Dong, J. J.

Feng, X. H.

Fu, S. N.

Guan, B. O.

Huang, D. X.

Jacquinot, H.

Kuo, B. P. P.

J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

LaRochelle, S.

Le Guennec, Y.

Lembrikov, B. I.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Li, J.

J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

Li, Z. H.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Lombard, P.

Lourdiane, M.

Lu, C.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Meyer, S.

Mirshafiei, M.

Mora, J.

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Ortega, B.

Pan, S. L.

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

Pawlik, M.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Pizzinat, A.

Polleux, J.-L.

Qiu, C.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

Ran, M.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Rurnelhard, C.

Rusch, L. A.

Shum, P.

Sillans, C.

Tafur Monroy, I.

Tam, H. Y.

Terre, M.

Wai, P. K. A.

Wang, Q.

Wang, S. G.

Wong, K. K. Y.

J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

Xie, S.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

Xie, S. Z.

Xin, M.

Xu, J.

Yao, J. P.

Yu, X. B.

Zeng, F.

Zhang, J.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

Zhang, X. L.

Electron. Lett.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, “UWB monocycle pulse generation by optical polarization time delay method,” Electron. Lett. 43(9), 542–543 (2007).
[CrossRef]

IEEE J. Sel. Areas Comm.

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

IEEE Microw. Mag.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. J.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

J. Li, B. P. P. Kuo, and K. K. Y. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, “An optical UWB pulse generator for flexible modulation format,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, “Direct transmission of ultra wide band signals using single mode radio-over-fiber system,” Proc. 2005 Asia-Pacific Microw. Conf. (APMC 2005) 1–5, 1315–1317 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configurations of the two typical techniques for the generation of optical UWB monocycles. (a) Generation of QSSB-UWB monocycle using a dual-drive MZM; (b) Generation of GUWB monocycle using a photonic microwave delay-line filter. LD: laser diode, MZM: Mach-Zehnder modulator, PD: photodetector, PC: polarization controller, PolM: polarization modulator, PMF: polarization maintaining fiber.

Fig. 2
Fig. 2

The (a) amplitude peak and (b) FWHM of the correlations between the ideal UWB monocycle and the QSSB-UWB and GUWB monocycles.

Fig. 3
Fig. 3

The curves of correlations between the ideal UWB monocycle and the (a) QSSB-UWB monocycle or (b) GUWB monocycle at four different phase modulation indices.

Fig. 4
Fig. 4

The calculated amplitude peak of the correlation signal with low pass filtering against phase modulation index. The cut-off frequencies of the low pass filters are (a) 384 MHz, (b) 819.2 MHz and (c) 2 GHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I AC 1 ( t ) 2 sin { κ 2 [ u ( t ) u ( t τ 0 ) ] }
u ( t ) = exp ( t 2 2 T 0 2 )
I AC 1 ( t ) κ [ u ( t ) u ( t τ 0 ) ] ± κ 3 24 [ u ( t ) u ( t τ 0 ) ] 3 κ 5 1920 [ u ( t ) u ( t τ 0 ) ] 5 ± κ 7 322560 [ u ( t ) u ( t τ 0 ) ] 7
w ( t ) = t exp ( 1 / 2 ) T 0 exp ( t 2 2 T 0 2 )
F 1 ( τ ) I AC 1 ( t ) w ( t τ ) d t = { κ [ u ( t ) u ( t τ 0 ) ] ± κ 3 24 [ u ( t ) u ( t τ 0 ) ] 3 κ 5 1920 [ u ( t ) u ( t τ 0 ) ] 5 } w ( t τ ) d t
F i d e a l ( τ ) = w ( t ) w ( t τ ) d t
I AC 2 ( t ) { sin [ κ u ( t ) ] sin [ κ u ( t τ 0 ) ] }
I AC2 ( t ) κ [ u ( t ) u ( t τ 0 ) ] ± 1 6 κ 3 [ u 3 ( t ) u 3 ( t τ 0 ) ] 1 120 κ 5 [ u 5 ( t ) u 5 ( t τ 0 ) ]
F 2 ( τ ) I AC2 ( t ) w ( t τ ) d t = { κ [ u ( t ) u ( t τ 0 ) ] ± 1 6 κ 3 [ u 3 ( t ) u 3 ( t τ 0 ) ] 1 120 κ 5 [ u 5 ( t ) u 5 ( t τ 0 ) ] } w ( t τ ) d t

Metrics