Abstract

We report our observations on enhancement and suppression of spatial four-wave mixing (FWM) images and the interplay of four coexisting FWM processes in a two-level atomic system associating with three-level atomic system as comparison. The phenomenon of spatial splitting of the FWM signal has been observed in both x and y directions. Such FWM spatial splitting is induced by the enhanced cross-Kerr nonlinearity due to atomic coherence. The intensity of the spatial FWM signal can be controlled by an additional dressing field. Studies on such controllable beam splitting can be very useful in understanding spatial soliton formation and interactions, and in applications of spatial signal processing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–9999 (1997).
    [CrossRef]
  2. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
    [CrossRef] [PubMed]
  3. B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998).
    [CrossRef] [PubMed]
  4. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
    [CrossRef]
  5. S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
    [CrossRef] [PubMed]
  6. Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
    [CrossRef]
  7. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [CrossRef]
  8. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
    [CrossRef]
  9. Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
    [CrossRef]
  10. Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
    [CrossRef] [PubMed]
  11. C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
    [CrossRef]
  12. G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
    [CrossRef] [PubMed]
  13. R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
    [CrossRef] [PubMed]
  14. A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, “Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium,” Opt. Lett. 17(1), 19–21 (1992).
    [CrossRef] [PubMed]
  15. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
    [CrossRef] [PubMed]
  16. W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
    [CrossRef]
  17. Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
    [CrossRef]
  18. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
    [CrossRef] [PubMed]
  19. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [CrossRef] [PubMed]
  20. W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
    [CrossRef] [PubMed]
  21. Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [CrossRef] [PubMed]

2010

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

2009

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

2008

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

2007

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

2002

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

2001

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

2000

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

1999

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

1998

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998).
[CrossRef] [PubMed]

1997

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–9999 (1997).
[CrossRef]

1995

1992

1990

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

Anderson, B.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

Aronstein, D. L.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Bennink, R. S.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Boyd, R. W.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, “Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium,” Opt. Lett. 17(1), 19–21 (1992).
[CrossRef] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Brown, A. W.

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

Burkett, W. H.

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[CrossRef] [PubMed]

Cronin-Golomb, M.

Denz, C.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Donoghue, J.

Du, S. W.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Gauthier, D. J.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Geisser, M.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–9999 (1997).
[CrossRef]

Hemmer, P. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
[CrossRef] [PubMed]

Howell, J. C.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[CrossRef] [PubMed]

Katz, D. P.

Kauranen, M.

Khadka, U.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Kivshar, Y. S.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Krolikowski, W.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Królikowski, W.

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Kumar, P.

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Li, C. B.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Li, H.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

Li, P. Z.

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Lu, K. Q.

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Lü, B.

Lukin, M. D.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Lukishova, S.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Luther-Davies, B.

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Luther-Davies, B. L.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Maki, J. J.

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

McCarthy, G.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Nie, Z. Q.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Ostrovskaya, E. A.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

Rubin, M. H.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

Saffman, M.

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

Scully, M. O.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Shahriar, M. S.

Song, J. P.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Stentz, A. J.

Stroud, C. R.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Vudyasetu, P. K.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Wang, Z. G.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Weilnau, C.

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Welch, G. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

Wen, F.

Wen, J. M.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

Wong, V.

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

Xiao, M.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998).
[CrossRef] [PubMed]

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Yang, Y. M.

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Yin, G. Y.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

Yuan, C. Z.

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Zhang, Y.

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

Zhang, Y. P.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Zheng, H. B.

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Zhu, Y. F.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Appl. Phys. Lett.

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91(6), 061113 (2007).
[CrossRef]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. A

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80(2), 023820 (2009).
[CrossRef]

Y. P. Zhang, Z. G. Wang, H. B. Zheng, C. Z. Yuan, C. B. Li, K. Q. Lu, and M. Xiao, “Four-wave-mixing gap solitons,” Phys. Rev. A 82(5), 053837 (2010).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang, and M. Xiao, “Interacting multi-wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[CrossRef]

Phys. Rev. Lett.

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
[CrossRef] [PubMed]

R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, R. W. Boyd, C. R. Stroud, S. Lukishova, and D. J. Gauthier, “Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,” Phys. Rev. Lett. 88(11), 113901 (2002).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic Rubidium vapor,” Phys. Rev. Lett. 100(12), 123903 (2008).
[CrossRef] [PubMed]

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98(5), 053601 (2007).
[CrossRef] [PubMed]

W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B. L. Luther-Davies, “Observation of dipole-mode vector solitons,” Phys. Rev. Lett. 85(7), 1424–1427 (2000).
[CrossRef] [PubMed]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four- wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–9999 (1997).
[CrossRef]

Science

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) and (b) The diagram of relevant Na energy levels. (c) The scheme of the experiment. Inset gives the spatial alignments of the incident beams.

Fig. 2
Fig. 2

(Color online) The interplay and mutual suppression/enhancement between two coexisting FWM signals ( E F 1 and E F 3 ). (a1) the upper curves: pure DFWM signal E F 1 (with both E 2 and E 2 blocked) (squares), singly dressed DFWM signal E F 1 (with E 2 blocked) (triangles), coexisting singly dressed DFWM signal E F 1 and FWM signal E F 3 (with E 2 blocked) (reverse triangles), and coexisting dressed DFWM signal E F 1 and FWM signal E F 3 (circles);lower curves: pure FWM signal E F 3 (with both E 1 and E 2 blocked) (left triangle), singly-dressed FWM signal (with E 1 blocked) (right triangle); Δ 1 = 0 . The inserted plot: corresponding to the dressed-state picture. (b1) the condition are the same to that in (a1) except Δ 1 = 25.9   GHz . The inserted plot: corresponding to the dressed-state picture. (a2) and (b2) theoretical plots corresponding to the experimental parameters of (a1) and (b1), respectively.

Fig. 3
Fig. 3

(a) and (b) Measured evolution of the four FWM signals [( E F 1 and E F 3 ) and ( E F 2 and E F 4 ), respectively] versus Δ 2 for different Δ 1 values. (a1)-(a7) and (b1)-(b7): Δ 1 = -139.1, −103.87, −29.5, 0, 29.8, 100.1, 155.7GHz, respectively.

Fig. 4
Fig. 4

(Color online) (a) Measured suppression and enhancement of DFWM signal E F 1 versus Δ 2 for different Δ 1 values in the two-level system. Δ 1 = -69.1, −55.5, −38.7, −19.2, 0, 14.7, 28.8, 42.2 and 57.3 GHz, respectively. The dashed curve is the double-peak DFWM signal E F 1 versus Δ 1 . (b) Theoretical plots corresponding to the experimental parameters in (a). (c) The same measures to (a) with the same condition, except that the laser beams E 1 , E 1 overlap in the middle of heat oven. (d1)-(d9) the dressed-state pictures of the suppression or enhancement of the DFWM signal. The states | G 1 ± > (dashed lines) and the states | G 1 + ± > or | G 1 ± > (dot-dashed lines), respectively.

Fig. 5
Fig. 5

(Color online) (a) DFWM signal E F 1 images when Δ 1 = -69.1, −55.5, −38.7GHz. (b) DFWM signal images when Δ 1 = -55.5, −38.7, −19.2GHz.

Fig. 6
Fig. 6

(a) Measured suppression and enhancement of DFWM signal E F 1 versus Δ 2 for different Δ 1 values. Δ 1 = -70.5, −55.8, −32.7, −15.4, 0, 16.5, 32.5, 48.2 and 72.1 GHz, respectively. The dashed curve is the double-peak DFWM signal E F 1 versus Δ 1 . (b) Theoretical plots corresponding to the experimental parameters in (a). (c1)-(c9) DFWM signal E F 1 images. The condition here is the same as that in (a).

Metrics